×

zbMATH — the first resource for mathematics

Regularized trace formula of magic Gribov operator on Bargmann space. (English) Zbl 1332.81062
Summary: In this article, we obtain a regularized trace formula for magic Gribov operator \(H = \lambda^{\prime\prime} G + H_{\mu, \lambda}\) acting on Bargmann space where \[ G = a^{\ast 3} a^3\quad \text{and}\quad H_{\mu, \lambda} = \mu a^\ast a + i \lambda a^\ast(a + a^\ast) a \] Here \(a\) and \(a^\ast\) are the standard Bose annihilation and creation operators and in Reggeon field theory, the real parameters \(\lambda^{\prime\prime}\) is the magic coupling of Pomeron, \(\mu\) is Pomeron intercept, \(\lambda\) is the triple coupling of Pomeron and \(i^2 = - 1\). By applying some abstract results of V. A. Sadovnichij and V. E. Podol’skij [Sb. Math. 193, No. 2, 279–302 (2002); translation from Mat. Sb. 193, No. 2, 129–152 (2002; Zbl 1033.47012)], we give the number of corrections sufficient for the existence of finite formula of the trace of concrete magic Gribov’s operator.

MSC:
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aimar, M. T.; Intissar, A.; Jeribi, A., On an unconditional basis of generalized eigenvectors of the nonself-adjoint Gribov operator in Bargmann space, J. Math. Anal. Appl., 231, 588-602, (1999) · Zbl 0959.47013
[2] Ando, T.; Zerner, M., Sur une valeur propre d’un opérateur, Comm. Math. Phys., 93, 123-139, (1984) · Zbl 0534.47014
[3] Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math., 14, (1962) · Zbl 0107.09103
[4] Dikii, L. A., About a formula of Gelfand-levitan, Uspekhi Mat. Nauk, 8, 2, 119-123, (1953)
[5] Dikii, L. A., New method of computing approximate eigenvalues of the Sturm-Liouville problem, Dokl. Akad. Nauk SSSR, 116, 12-14, (1957)
[6] Gelfand, I. M.; Levitan, B. M., On a simple identity for the characteristic values of a differential operator of second order, Dokl. Akad. Nauk SSSR, 88, 593-596, (1953)
[7] Gohberg, I.; Goldberg, S.; Krupnik, N., Traces and determinants of linear operators, (2000), Birkhäuser · Zbl 0946.47013
[8] Gohberg, I. C.; Krein, M. G., Introduction to the theory of linear non-self adjoint operators, Transl. Math. Monogr., vol. 18, (1969), Am. Math. Soc. Providence, RI · Zbl 0181.13504
[9] Gribov, V., A Reggeon diagram technique, Sov. Phys. JETP, 26, 2, 414-423, (1968)
[10] Intissar, A., Etude spectrale d’une famille d’opérateurs non-symétriques intervenant dans la théorie des champs de reggeons, Comm. Math. Phys., 113, 263-297, (1987) · Zbl 0645.47003
[11] Intissar, A., Quelques nouvelles propriétés spectrales de l’hamiltonien de la théorie des champs de reggeons, C. R. Acad. Sci. Paris Sér. I, 308, 209-214, (1989) · Zbl 0685.47001
[12] Intissar, A., Analyse fonctionnelle et théorie spectrale pour LES opérateurs compacts non auto-adjoints, (1997), Editions Cepadues Toulouse
[13] Intissar, A., Analyse de scattering d’un opérateur cubique de Heun dans l’espace de Bargmann, Comm. Math. Phys., 199, 243-256, (1998) · Zbl 0943.34071
[14] Intissar, A., Approximation of the semigroup generated by the Hamiltonian of Reggeon field theory in Bargmann space, J. Math. Anal. Appl., 305, 2, 669-689, (2005) · Zbl 1072.47038
[15] Intissar, A., On regularized trace formula of Gribov semigroup generated by the Hamiltonian of Reggeon field theory in Bargmann representation, (12 November 2013)
[16] Intissar, A., Spectral analysis of non-self-adjoint Jacobi-Gribov operator and asymptotic analysis of its generalized eigenvectors, Adv. Math. (China), 44, 3, (May 2015)
[17] Intissar, A.; Le Bellac, M.; Zerner, M., Properties of the Hamiltonian of Reggeon field theory, Phys. Lett. B, 113, 487-489, (1982)
[18] Janas, J.; Naboko, S., Multithreshold spectral phase transition examples in class of unbounded Jacobi matrices, (Recent Advances in Operator Theory, Oper. Theory Adv. Appl., vol. 124, (2001), Birkhäuser-Verlag Basel), 267-285 · Zbl 1017.47025
[19] Kato, T., Perturbation theory for linear operators, (1976), Springer-Verlag New York
[20] Naymark, M. A., Linear differential operators, (1969), Nauka Moscow, 528 pp
[21] Reed, M.; Simon, B., Methods of modern mathematical physics I: functional analysis, (1980), Academic Press
[22] Sadovnichii, V. A.; Podolskii, V. E., On the class of Sturm-Liouville operators and approximate calculation of first eigenvalues, Mat. Sb., 189, 1, 133-148, (1998) · Zbl 0908.34015
[23] Sadovnichii, V. A.; Podolskii, V. E., Traces of operators with relatively compact perturbations, Mat. Sb., 193, 2, 129-152, (2002)
[24] Sadovnichii, V. A.; Podolskii, V. E., Trace of operators, Uspekhi Mat. Nauk, 61, 5, 89-156, (2006)
[25] Sadovnichii, V. A.; Podolskii, V. E., Regularized traces of discrete operators, Proc. Steklov Inst. Math., Suppl. 2, 161-177, (2006)
[26] Sadovnichii, V. A.; Podolskii, V. E., Traces of differential operators, Differ. Equ., 45, 4, 477-493, (2009) · Zbl 1177.47054
[27] Simon, B., Notes on infinite determinants of Hilbert space operators, Adv. Math., 24, 244-273, (1977) · Zbl 0353.47008
[28] Simon, B., Trace ideals and their applications, Math. Surveys Monogr., vol. 120, (2005), Am. Math. Soc. · Zbl 1074.47001
[29] Tomin, N. G., Several formulas for the first regularized trace of discrete operators, Math. Notes, 70, 1, 97-109, (2001) · Zbl 1039.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.