×

Curves in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded. (Courbes complexes dans des surfaces quadriques et cubiques à complémentaire Kobayashi-hyperbolique.) (English. French summary) Zbl 1405.32034

Summary: We construct smooth irreducible curves of the lowest possible degrees in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded into those surfaces. Moreover we characterize line bundles on quadric and cubic surfaces such that the complete linear systems of the line bundles have a smooth irreducible curve whose complement is Kobayashi hyperbolically imbedded into those surfaces.

MSC:

32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
14J26 Rational and ruled surfaces
PDFBibTeX XMLCite
Full Text: DOI Numdam

References:

[1] Beauville, Arnaud, Complex algebraic surfaces, 34 (1996) · Zbl 0849.14014
[2] Ciliberto, C.; Zaidenberg, M., Scrolls and hyperbolicity, Internat. J. Math., 24, 4 (2013) · Zbl 1270.14027
[3] Corvaja, Pietro; Noguchi, Junjiro, A new unicity theorem and Erdös’ problem for polarized semi-abelian varieties, Math. Ann., 353, 2, 439-464 (2012) · Zbl 1315.14058
[4] Demailly, Jean-Pierre; El Goul, Jawher, Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math., 122, 3, 515-546 (2000) · Zbl 0966.32014
[5] Di Rocco, Sandra, \(k\)-very ample line bundles on del Pezzo surfaces, Math. Nachr., 179, 47-56 (1996) · Zbl 0870.14031
[6] Dolgachev, Igor V., Classical algebraic geometry (2012) · Zbl 1252.14001
[7] Duval, Julien, Une sextique hyperbolique dans \({\rm P}^3(\mathbf{C})\), Math. Ann., 330, 3, 473-476 (2004) · Zbl 1071.14045
[8] El Goul, Jawher, Logarithmic jets and hyperbolicity, Osaka J. Math., 40, 2, 469-491 (2003) · Zbl 1048.32016
[9] Fujimoto, Hirotaka, Extensions of the big Picard’s theorem, Tôhoku Math. J. (2), 24, 415-422 (1972) · Zbl 0244.32011
[10] Fujimoto, Hirotaka, On holomorphic maps into a taut complex space, Nagoya Math. J., 46, 49-61 (1972) · Zbl 0231.32002
[11] Green, Mark L., Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc., 169, 89-103 (1972) · Zbl 0256.32015
[12] Hartshorne, Robin, Algebraic geometry (1977) · Zbl 0367.14001
[13] Kobayashi, Shoshichi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan, 19, 460-480 (1967) · Zbl 0158.33201
[14] Kobayashi, Shoshichi, Hyperbolic manifolds and holomorphic mappings, 2 (1970) · Zbl 0247.32015
[15] Manin, Yu. I., Cubic forms: algebra, geometry, arithmetic (1974) · Zbl 0277.14014
[16] Masuda, Kazuo; Noguchi, Junjiro, A construction of hyperbolic hypersurface of \({\bf P}^n({\bf C})\), Math. Ann., 304, 2, 339-362 (1996) · Zbl 0844.32018
[17] McQuillan, M., Holomorphic curves on hyperplane sections of \(3\)-folds, Geom. Funct. Anal., 9, 2, 370-392 (1999) · Zbl 0951.14014
[18] Noguchi, Junjiro, Holomorphic curves in algebraic varieties, Hiroshima Math. J., 7, 3, 833-853 (1977) · Zbl 0412.32025
[19] Noguchi, Junjiro, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J., 83, 213-233 (1981) · Zbl 0429.32003
[20] Noguchi, Junjiro; Ochiai, Takushiro, Geometric function theory in several complex variables, 80 (1990) · Zbl 0713.32001
[21] Păun, Mihai, Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Math. Ann., 340, 4, 875-892 (2008) · Zbl 1137.32010
[22] Rousseau, Erwan, Logarithmic vector fields and hyperbolicity, Nagoya Math. J., 195, 21-40 (2009) · Zbl 1189.32015
[23] Siu, Yum-Tong; Yeung, Sai-kee, Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane, Invent. Math., 124, 1-3, 573-618 (1996) · Zbl 0856.32017
[24] Tiba, Yusaku, Kobayashi hyperbolic imbeddings into toric varieties, Math. Ann., 355, 3, 879-892 (2013) · Zbl 1277.32025
[25] Zaĭdenberg, M.; Shiffman, B., New examples of Kobayashi hyperbolic surfaces in \(\mathbb{C}\rm P^3\), Funktsional. Anal. i Prilozhen., 39, 1, 90-94 (2005)
[26] Zaĭdenberg, M. G., Stability of hyperbolic embeddedness and the construction of examples, Mat. Sb. (N.S.), 135(177), 3, 361-372, 415 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.