A mixed action analysis of \(\eta\) and \(\eta^{\prime}\) mesons. (English) Zbl 1331.81415

Summary: We study \(\eta\) and \(\eta^{\prime}\) mesons and their mixing angle in a mixed action approach with so-called Osterwalder-Seiler valence quarks on a Wilson twisted mass sea. The gauge configurations have been generated by ETMC for \(N_f = 2 + 1 + 1\) dynamical quark flavours and for three values of the lattice spacing. The main results are that differences in between the mixed action and the unitary approach vanish towards the continuum limit with the expected rate of \(\mathcal{O}(a^2)\). The individual size of the lattice artifacts depends, however, strongly on the observable used to match unitary and valence actions. Moreover, we show that for the {\(\eta\)} mass valence and valence plus sea quark mass dependence differ significantly. Hence, in this case a re-tuning of the simulation parameters in the valence sector only is not sufficient to compensate for mismatches in the original quark masses.


81V35 Nuclear physics
81V05 Strong interaction, including quantum chromodynamics
81T25 Quantum field theory on lattices
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)


Lemon; R; tmLQCD
Full Text: DOI arXiv


[1] Bär, O.; Rupak, G.; Shoresh, N., Simulations with different lattice Dirac operators for valence and sea quarks, Phys. Rev. D, 67, 114505, (2003)
[2] Neuberger, H., Exactly massless quarks on the lattice, Phys. Lett. B, 417, 141-144, (1998)
[3] Neuberger, H., More about exactly massless quarks on the lattice, Phys. Lett. B, 427, 353-355, (1998)
[4] Bar, O.; Golterman, M.; Shamir, Y., Flavor symmetry breaking in lattice QCD with a mixed action, Phys. Rev. D, 83, 054501, (2011)
[5] Kaplan, D. B., A method for simulating chiral fermions on the lattice, Phys. Lett. B, 288, 342-347, (1992)
[6] Bowler, K.; Joo, B.; Kenway, R.; Maynard, C.; Tweedie, R., Lattice QCD with mixed actions, J. High Energy Phys., 0508, 003, (2005)
[7] Cichy, K.; Drach, V.; Garcia-Ramos, E.; Herdoiza, G.; Jansen, K., Overlap valence quarks on a twisted mass sea: a case study for mixed action lattice QCD, Nucl. Phys. B, 869, 131-163, (2013) · Zbl 1262.81129
[8] Carrasco, N., Up, down, strange and charm quark masses with \(N_f = 2 + 1 + 1\) twisted mass lattice QCD, Nucl. Phys. B, 887, 19-68, (2014) · Zbl 1325.81170
[9] Bardeen, W. A.; Duncan, A.; Eichten, E.; Isgur, N.; Thacker, H., Chiral loops and ghost states in the quenched scalar propagator, Phys. Rev. D, 65, 014509, (2001)
[10] Bardeen, W. A.; Eichten, E.; Thacker, H., Chiral Lagrangian parameters for scalar and pseudoscalar mesons, Phys. Rev. D, 69, 054502, (2004)
[11] Frezzotti, R.; Rossi, G. C., Chirally improving Wilson fermions. II: four-quark operators, J. High Energy Phys., 10, 070, (2004)
[12] Frezzotti, R.; Grassi, P. A.; Sint, S.; Weisz, P., Lattice QCD with a chirally twisted mass term, J. High Energy Phys., 08, 058, (2001)
[13] Witten, E., Current algebra theorems for the \(U(1)\) Goldstone boson, Nucl. Phys. B, 156, 269, (1979)
[14] Veneziano, G., \(U(1)\) without instantons, Nucl. Phys. B, 159, 213-224, (1979)
[15] Veneziano, G., Goldstone mechanism from gluon dynamics, Phys. Lett. B, 95, 90, (1980)
[16] Gregory, E. B.; Irving, A. C.; Richards, C. M.; McNeile, C., Pseudoscalar flavor-singlets and staggered fermions, PoS, LAT2006, 176, (2006)
[17] Gregory, E. B.; Irving, A. C.; Richards, C. M.; McNeile, C., A study of the η and \(\eta^\prime\) mesons with improved staggered fermions, Phys. Rev. D, 86, 014504, (2012)
[18] Ottnad, K., η and \(\eta^\prime\) mesons from \(N_f = 2 + 1 + 1\) twisted mass lattice QCD, J. High Energy Phys., 1211, 048, (2012)
[19] Michael, C.; Ottnad, K.; Urbach, C., η and \(\eta^\prime\) mixing from lattice QCD, Phys. Rev. Lett., 111, 181602, (2013)
[20] Bennett, G., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D, 73, 072003, (2006)
[21] Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M., Complete tenth-order QED contribution to the muon g-2, Phys. Rev. Lett., 109, 111808, (2012)
[22] Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z., Reevaluation of the hadronic contributions to the muon g-2 and to \(\alpha(M_Z)\), Eur. Phys. J. C, 71, 1515, (2011)
[23] Hagiwara, K.; Liao, R.; Martin, A. D.; Nomura, D.; Teubner, T., \((g - 2)_\mu\) and \(\alpha(M_Z^2)\) re-evaluated using new precise data, J. Phys. G, 38, 085003, (2011)
[24] Cichy, K.; Drach, V.; Ramos, E. G.; Jansen, K.; Michael, C., Properties of pseudoscalar flavour-singlet mesons from \(2 + 1 + 1\) twisted mass lattice QCD, PoS, LATTICE2012, 151, (2012)
[25] Christ, N.; Dawson, C.; Izubuchi, T.; Jung, C.; Liu, Q., The η and \(\eta^\prime\) mesons from lattice QCD, Phys. Rev. Lett., 105, 241601, (2010)
[26] Kaneko, T., Flavor-singlet mesons in \(N(f) = 2 + 1\) QCD with dynamical overlap quarks, PoS, LAT2009, 107, (2009)
[27] Dudek, J. J.; Edwards, R. G.; Joo, B.; Peardon, M. J.; Richards, D. G., Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D, 83, 111502, (2011)
[28] Dudek, J. J.; Edwards, R. G.; Guo, P.; Thomas, C. E., Toward the excited isoscalar meson spectrum from lattice QCD, Phys. Rev. D, 88, 9, 094505, (2013)
[29] Bali, G. S.; Collins, S.; Dürr, S.; Kanamori, I., \(D_s \rightarrow \eta, \eta^\prime\) semileptonic decay form factors with disconnected quark loop contributions, Phys. Rev. D, 91, 1, 014503, (2015)
[30] Baron, R., Light hadrons from lattice QCD with light \((u, d)\), strange and charm dynamical quarks, J. High Energy Phys., 06, 111, (2010) · Zbl 1288.81140
[31] Frezzotti, R.; Rossi, G. C., Twisted-mass lattice QCD with mass non-degenerate quarks, Nucl. Phys. B, Proc. Suppl., 128, 193-202, (2004)
[32] Chiarappa, T.; Farchioni, F.; Jansen, K.; Montvay, I.; Scholz, E., Numerical simulation of QCD with u, d, s and c quarks in the twisted-mass Wilson formulation, Eur. Phys. J. C, 50, 373-383, (2007)
[33] Frezzotti, R.; Rossi, G. C., Chirally improving Wilson fermions. I: \(O(a)\) improvement, J. High Energy Phys., 08, 007, (2004)
[34] Ottnad, K., Properties of pseudoscalar flavor singlet mesons from lattice QCD, (February 2014), University of Bonn Bonn, Ph.D. thesis
[35] Blossier, B., Light quark masses and pseudoscalar decay constants from \(N_f = 2\) lattice QCD with twisted mass fermions, J. High Energy Phys., 04, 020, (2008)
[36] Frezzotti, R.; Martinelli, G.; Papinutto, M.; Rossi, G., Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit, J. High Energy Phys., 0604, 038, (2006)
[37] Baron, R., Computing K and D meson masses with \(N_f = 2 + 1 + 1\) twisted mass lattice QCD, Comput. Phys. Commun., 182, 299-316, (2011) · Zbl 1215.81121
[38] Shindler, A., Twisted mass lattice QCD, Phys. Rep., 461, 37-110, (2008)
[39] Jansen, K.; Michael, C.; Urbach, C., The eta-prime meson from lattice QCD, Eur. Phys. J. C, 58, 261-269, (2008)
[40] Boucaud, P., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun., 179, 695-715, (2008)
[41] Alexandrou, C.; Constantinou, M.; Drach, V.; Hadjiyiannakou, K.; Jansen, K., Evaluation of disconnected quark loops for hadron structure using gpus, Comput. Phys. Commun., 185, 1370-1382, (2014)
[42] Michael, C.; Teasdale, I., Extracting glueball masses from lattice QCD, Nucl. Phys. B, 215, 433, (1983)
[43] Lüscher, M.; Wolff, U., How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nucl. Phys. B, 339, 222-252, (1990)
[44] Blossier, B.; Della Morte, M.; von Hippel, G.; Mendes, T.; Sommer, R., On the generalized eigenvalue method for energies and matrix elements in lattice field theory, J. High Energy Phys., 0904, 094, (2009)
[45] Lacock, P.; McKerrell, A.; Michael, C.; Stopher, I. M.; Stephenson, P. W., Efficient hadronic operators in lattice gauge theory, Phys. Rev. D, 51, 6403-6410, (1995)
[46] Kaiser, R.; Leutwyler, H., Pseudoscalar decay constants at large \(N(c)\), (1998) · Zbl 0986.81512
[47] Kaiser, R.; Leutwyler, H., Large \(N(c)\) in chiral perturbation theory, Eur. Phys. J. C, 17, 623-649, (2000) · Zbl 1082.81520
[48] Feldmann, T.; Kroll, P.; Stech, B., Mixing and decay constants of pseudoscalar mesons: the sequel, Phys. Lett. B, 449, 339-346, (1999)
[49] Feldmann, T.; Kroll, P.; Stech, B., Mixing and decay constants of pseudoscalar mesons, Phys. Rev. D, 58, 114006, (1998)
[50] Neff, H.; Eicker, N.; Lippert, T.; Negele, J. W.; Schilling, K., On the low fermionic eigenmode dominance in QCD on the lattice, Phys. Rev. D, 64, 114509, (2001)
[51] Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A., Scalar meson in dynamical and partially quenched two-flavor QCD: lattice results and chiral loops, Phys. Rev. D, 70, 094503, (2004)
[52] Bernard, C. W.; Golterman, M. F., Chiral perturbation theory for the quenched approximation of QCD, Phys. Rev. D, 46, 853-857, (1992)
[53] Sharpe, S. R.; Shoresh, N., Physical results from unphysical simulations, Phys. Rev. D, 62, 094503, (2000)
[54] Bijnens, J.; Danielsson, N.; Lahde, T. A., Three-flavor partially quenched chiral perturbation theory at NNLO for meson masses and decay constants, Phys. Rev. D, 73, 074509, (2006)
[55] Carrasco, N.; Dimopoulos, P.; Frezzotti, R.; Lami, P.; Lubicz, V., Leptonic decay constants \(f_K\), \(f_D\), and \(f_{D_s}\) with \(N_f = 2 + 1 + 1\) twisted-mass lattice QCD, Phys. Rev. D, 91, 5, 054507, (2015)
[56] Blossier, B., Pseudoscalar decay constants of kaon and D-mesons from \(N_f = 2\) twisted mass lattice QCD, J. High Energy Phys., 0907, 043, (2009)
[57] Jansen, K.; Urbach, C., Tmlqcd: a program suite to simulate Wilson twisted mass lattice QCD, Comput. Phys. Commun., 180, 2717-2738, (2009) · Zbl 1197.81172
[58] Deuzeman, A.; Reker, S.; Urbach, C., Lemon: an MPI parallel I/O library for data encapsulation using LIME, Comput. Phys. Commun., 183, 1321-1335, (2012)
[59] R: A language and environment for statistical computing, (2005), R Foundation for Statistical Computing Vienna, Austria
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.