zbMATH — the first resource for mathematics

Nakedly singular non-vacuum gravitating equilibrium states. (English) Zbl 1332.83030
Summary: Non-vacuum static spherically symmetric spacetimes with central point-like repulsive gravity sources are investigated. Both the symmetries of spacetime and the degree of irregularity of curvature invariants, are the same as for the Schwarzschild case. The equilibrium configurations are modelled using the neutron star polytrope equation of state.

83C15 Exact solutions to problems in general relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
85A15 Galactic and stellar structure
ccgrg; NP; NPspinor
Full Text: DOI
[1] Wald, R.M.: General Relativity. University of Chicago Press, Chicago (2010)
[2] Gibbons, GW; Hartnoll, SA; Ishibashi, A, On the stability of naked singularities with negative mass, Prog. Theor. Phys., 113, 963, (2005) · Zbl 1105.83013
[3] Krolak, A, Towards the proof of the cosmic censorship hypothesis, Class. Quantum Gravity, 3, 267, (1986) · Zbl 0601.53079
[4] Mazur, P.O., Mottola, E.: Gravitational condensate stars: an alternative to black holes. (2001) arXiv:gr-qc/0109035v5 · Zbl 1242.83067
[5] Mazur, PO; Mottola, E, Gravitational vacuum condensate stars, Proc. Nat. Acad. Sci., 101, 9545, (2004)
[6] Mazur, P.O., Mottola, E.: Surface tension and negative pressure interior of a non-singular ‘black hole’. (2015) arXiv:1501.03806 · Zbl 1329.83120
[7] Carminati, J; McLenaghan, RG, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys., 32, 3135, (1991) · Zbl 0736.76081
[8] Woszczyna, A., et al.: ccgrg — The symbolic tensor analysis package, with tools for general relativity. (2014). http://library.wolfram.com/infocenter/MathSource/8848/ · Zbl 1261.83026
[9] Silbar, R.R., Reddy, S.: Neutron stars for undergraduates. (2003). arXiv:nucl-th/0309041 · Zbl 1231.83024
[10] Oppenheimer, JR; Volkoff, GM, On massive neutron cores, Phys. Rev., 55, 374, (1939) · Zbl 0020.28501
[11] Friedman, JL, Stability theory of relativistic stars, J. Astrophys. Astron., 17, 199, (1996)
[12] Bondi, H, The gravitational redshift from static spherical bodies, Mon. Not. R. Astron. Soc., 302, 337, (1999)
[13] Joshi, P.S.: Gravitational Collapse and Spacetime Singularities. Cambridge Monographs on Mathematical Physics. Cambridge University Press, New York (2012) · Zbl 1105.83013
[14] Malafarina, D; Joshi, PS, Gravitational collapse with non-vanishing tangential pressure, Int. J. Mod. Phys. D, 20, 463, (2011) · Zbl 1220.83035
[15] Joshi, PS; Malafarina, D; Narayan, R, Equilibrium configurations from gravitational collapse, Class. Quantum Grav., 28, 235018, (2011) · Zbl 1231.83024
[16] Joshi, P.S., Malafarina, D., Saraykar, R.V.: Genericity aspects in gravitational collapse to black holes and naked singularities. (2011). arXiv:1107.3749 · Zbl 1277.83069
[17] Sarwe, S., Saraykar, R.V., Joshi, P.S.: Gravitational collapse with equation of state. (2012). arXiv:1207.3200 · Zbl 1407.83006
[18] Saraykar, R.V., Joshi, P.S.: A note on genericity and stability of black holes and naked singularities in dust collapse. (2012). arXiv:1207.3469 · Zbl 1325.83019
[19] Joshi, P.S., Malafarina, D.: Recent developments in gravitational collapse and spacetime singularities. Int. J. Mod. Phys. D 20, 2641 (2012). arXiv:1201.3660v1 · Zbl 1263.83011
[20] Joshi, PS; Malafarina, D, Instability of black hole formation under small pressure perturbations, Gen. Relativ. Gravity, 45, 305, (2013) · Zbl 1261.83026
[21] Joshi, P.S., Malafarina, D., Narayan, R.: Distinguishing black holes from naked singularities through their accretion disk properties. (2013). arXiv:1304.7331v1 · Zbl 1287.83032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.