A new selection operator for the discrete empirical interpolation method – improved a priori error bound and extensions. (English) Zbl 1382.65193


65L05 Numerical methods for initial value problems involving ordinary differential equations
15A12 Conditioning of matrices
15A23 Factorization of matrices
93B11 System structure simplification
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI arXiv


[1] E. Anderson et al., LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia, 1999. · Zbl 0755.65028
[2] H. Antil, S. E. Field, F. Herrmann, R. H. Nochetto, and M. Tiglio, Two-step greedy algorithm for reduced order quadratures, J. Sci. Comput., 57 (2013), pp. 604–637. · Zbl 1292.65024
[3] P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Control, 53 (2008), pp. 2237–2251. · Zbl 1367.93110
[4] Z. Bai and D. Skoogh, A projection method for model reduction of bilinear dynamical systems, Linear Algebra Appl., 415 (2006), pp. 406–425. · Zbl 1107.93012
[5] M. Barrault, N. C. Nguyen, Y. Maday, and A. T. Patera, An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 667–672. · Zbl 1061.65118
[6] P. Benner and T. Breiten, Interpolation-based \(\mathcal{H}_2\)-model reduction of bilinear control systems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 859–885. · Zbl 1256.93027
[7] P. Benner and T. Breiten, Two-sided projection methods for nonlinear model order reduction, SIAM J. Sci. Comput., 37 (2015), pp. B239–B260. · Zbl 1312.93016
[8] P. Benner, S. Gugercin, and K. Willcox, A Survey of Model Reduction Methods for Parametric Systems, Technical report MPIMD/13-14, Max Planck Institute Magdeburg, Magdeburg, Germany, 2013. · Zbl 1339.37089
[9] G. Berkooz, P. Holmes, and J. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25 (1993), pp. 539–575.
[10] C. H. Bischof and G. Quintana-Orti, Algorithm 782: Codes for rank–revealing QR factorizations of dense matrices, ACM Trans. Math. Software, 24 (1998), pp. 254–257. · Zbl 0932.65034
[11] C. H. Bischof and G. Quintana-Orti, Computing rank–revealing QR factorizations of dense matrices, ACM Trans. Math. Software, 24 (1998), pp. 226–253. · Zbl 0932.65033
[12] L. S. Blackford et al., ScaLAPACK User’s Guide, SIAM, Philadelphia, 1997.
[13] P. A. Businger and G. H. Golub, Linear least squares solutions by Householder transformations, Numer. Math., 7 (1965), pp. 269–276. · Zbl 0142.11503
[14] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242 (2013), pp. 623–647. · Zbl 1299.76180
[15] S. Chandrasekaran and I. C. F. Ipsen, On rank–revealing factorisations, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 592–622. · Zbl 0796.65030
[16] Y. Chen, Model Order Reduction for Nonlinear Systems, Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, 1999.
[17] M. Condon and R. Ivanov, Model reduction of nonlinear systems, COMPEL, 23 (2004), pp. 547–557. · Zbl 1064.94564
[18] E. de Sturler, S. Gugercin, M. Kilmer, S. Chaturantabut, C. Beattie, and M. O’Connell, Nonlinear parametric inversion using interpolatory model reduction, SIAM J. Sci. Comput., 37 (2015), pp. B495–B517. · Zbl 1433.65194
[19] Z. Drmač, A global convergence proof for cyclic Jacobi methods with block rotations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1329–1350. · Zbl 1201.65052
[20] Z. Drmač and Z. Bujanović, On the failure of rank revealing QR factorization software – a case study, ACM Trans. Math. Software, 35 (2008), pp. 1–28.
[21] R. Everson and L. Sirovich, The Karhunen-Loève Procedure for Gappy Data, J. Opt. Soc. Amer., 12 (1995), pp. 1657–1664.
[22] D. Faddeev, V. Kublanovskaya, and V. Faddeeva, Solution of linear algebraic systems with rectangular matrices, Proc. Steklov Inst. Math., 96 (1968), pp. 93–111. · Zbl 0208.40001
[23] G. Flagg and S. Gugercin, Multipoint Volterra series interpolation and \(\mathcal{H}_2\) optimal model reduction of bilinear systems, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 549–579. · Zbl 1315.93036
[24] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their \(l_∞\)-error bounds, Internat. J. Control, 39 (1984), pp. 1115–1193. · Zbl 0543.93036
[25] S. Goreinov, E. Tyrtyshnikov, and N. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1–21. · Zbl 0877.65021
[26] C. Gu, QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems, IEEE Trans. Comput. Aided Des. Integrated Circuits Syst., 30 (2011), pp. 1307–1320.
[27] S. Gugercin, A. C. Antoulas, and C. Beattie, \(\mathcal{H}_2\) model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609–638. · Zbl 1159.93318
[28] M. Hinze and S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control, in Dimension Reduction of Large-Scale Systems, Springer, Berlin, 2005, pp. 261–306. · Zbl 1079.65533
[29] H. Hotelling, Analysis of a complex of statistical variables with principal components, J. Educ. Psych., 24 (1933), pp. 417–441, 498–520. · JFM 59.1183.01
[30] I. C. F. Ipsen and T. Wentworth, The effect of coherence on sampling from matrices with orthonormal columns, and preconditioned least squares problems, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 1490–1520. · Zbl 1359.65063
[31] W. Kahan, Numerical linear algebra, Canad. Math. Bull., 9 (1965), pp. 757–801. · Zbl 0236.65025
[32] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40 (2002), pp. 492–515. · Zbl 1075.65118
[33] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice–Hall, Englewood Cliffs, NJ, 1974. · Zbl 0860.65028
[34] M. Loéve, Probability Theory, D. Van Nostrand, New York, 1955.
[35] J. Lumley, The Structures of Inhomogeneous Turbulent Flow, in Atmospheric Turbulence and Radio Wave Propagation, Nauka, Moscow, 1967, pp. 166–178.
[36] B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17–32. · Zbl 0464.93022
[37] C. Mullis and R. Roberts, Synthesis of minimum roundoff noise fixed point digital filters, IEEE Trans. Circuits Syst., 23 (1976), pp. 551–562. · Zbl 0342.93066
[38] S. S. Chaturantabut and D. Sorensen, Nonlinear model reduction for porous media flow, in 2010 SIAM Annual Meeting, 2010. · Zbl 1217.65169
[39] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), pp. 2737–2764. · Zbl 1217.65169
[40] D. Sorensen, private communication, 2010.
[41] D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, CAAM Department Technical report TR14-04, Rice University, Houston, TX, 2014.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.