×

zbMATH — the first resource for mathematics

Opérateurs d’intégrale singulière les surfaces régulières. (Singular integral operators on regular surfaces). (French) Zbl 0655.42013
The aim of the paper is to find a rather large class of k-dimensional surfaces in \({\mathbb{R}}^ n \)on which the natural singular integral operators are bounded on \({\mathbb{L}}^ 2.\) A surface belonging to this class is called regular and is characterized by a Lipschitz function z(x) having the property \(| \{x\in {\mathbb{R}}^ k;\)z(x)\(\in B\}| \leq Cr({\mathbb{B}})\) k for any ball \({\mathbb{B}}\) of radius r(\({\mathbb{B}})\) in \({\mathbb{R}}^ n.\) It is shown that if z(x) is a regular surface and if \({\mathbb{K}}:{\mathbb{R}}\) \(n\setminus \{0\}\to {\mathbb{C}}\) is an odd, \(C^{\infty}\), homogeneous of degree -k function then the kernel \({\mathbb{K}}(z(x)-z(y))\) defines a bounded operator on \({\mathbb{L}}\) 2(\({\mathbb{R}}\) k). Thus, if \(k=n-1\), the double-layer potential defines a bounded operator on \({\mathbb{L}}\) 2(\({\mathbb{S}})\) when \({\mathbb{S}}\) is a regular surface of dimension n-1.
Reviewer: L.Goras

MSC:
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] L. AHLFORS , Zur Theorie der Uberlagerungsflöschen (Acta Math., vol. 65, 1935 , p. 157-194). Zbl 0012.17204 | JFM 61.0365.03 · Zbl 0012.17204
[2] R. R. COIFMAN , G. DAVID et Y. MEYER , La solution des conjectures de Calderón (Advances in Math., vol. 48, 1983 , p. 144-148). MR 84i:42025 | Zbl 0518.42024 · Zbl 0518.42024
[3] R. R. COIFMAN , A. MCINTOSH et Y. MEYER , L’intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes (Ann. of Math., vol. 116, 1982 , p. 361-387). MR 84m:42027 | Zbl 0497.42012 · Zbl 0497.42012
[4] G. DAVID , Opérateurs intégraux singuliers sur certaines courbes du plan complexe (Ann. scient. Ec. Norm. Sup., vol. 17, 1984 , p. 157-189). Numdam | MR 85k:42026 | Zbl 0537.42016 · Zbl 0537.42016
[5] G. DAVID , Noyau de Cauchy et opérateurs de Calderón-Zygmund (Thèse d’État, Paris-XI - Orsay, 3193, 1986 ).
[6] J.-L. JOURNÉ , Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón (Lecture Notes in Mathematics, n^\circ 994, Springer, 1983 ). MR 85i:42021 | Zbl 0508.42021 · Zbl 0508.42021
[7] T. MURAI , Boundedness of Singular Integral Operators of Calderón type VI , Preprint series, College of general Education, Nagoya, n^\circ 8, 1984 . · Zbl 0542.42010
[8] S. SEMMES , Chord-arc Surfaces with Small Constants, I et II , preprint. · Zbl 0733.42015
[9] S. SEMMES , A Criterion for the Boundedness of Singular Integrals on Hypersurfaces , à paraître, Trans. A.M.S. Zbl 0675.42015 · Zbl 0675.42015
[10] E. M. STEIN , Singular Integrals and Differentiability Properties of Functions , Princeton University Press, 1970 . MR 44 #7280 | Zbl 0207.13501 · Zbl 0207.13501
[11] A. Zygmund , Trigonometric Series , Cambridge University Press, 1968 . MR 38 #4882 · Zbl 0157.38204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.