zbMATH — the first resource for mathematics

Topological components of spaces of representations. (English) Zbl 0655.57019
From the introduction: Let \(S\) be a closed oriented surface of genus \(g>1\) and let \(\pi\) denote its fundamental group. Let \(G\) be a semisimple Lie group. The purpose of this paper is to investigate the global properties of the space \(\operatorname{Hom}(\pi,G)\) of all representations \(\pi\to G\), when \(G\) is locally isomorphic to either PSL(2,\({\mathbb{C}})\) or PSL(2,\({\mathbb{R}})\). The main results of this paper may be summarized as follows:
Theorem A. (i) Let \(G\) be the \(n\)-fold covering group of PSL(2,\({\mathbb{R}})\). Then the number of connected components of \(Hom(\pi,G)\) is given by the following formula: \[ 2n^{2g}+(4g-4)/n-1\quad\text{if} \quad n| 2g-2;\quad 2[(2g-2)/n]+1\quad\text{if}\quad n\nmid 2g-2. \] For example \(\operatorname{Hom}(\pi,\text{SL}(2,\mathbb{R}))\) has \(2^{2g+1}+2g-3\) components. (ii) Let \(G=SO(3)\) or PSL(2,\({\mathbb{C}})\). Then \(\operatorname{Hom}(\pi,G)\) has exactly two connected components. If \(G=SU(2)\) or SL(2,\({\mathbb{C}})\) then \(\operatorname{Hom}(\pi,G)\) is connected.

57R22 Topology of vector bundles and fiber bundles
57R30 Foliations in differential topology; geometric theory
57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
57M05 Fundamental group, presentations, free differential calculus
20F99 Special aspects of infinite or finite groups
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
22E99 Lie groups
Full Text: DOI EuDML
[1] Chuckrow, V.: On Schottky groups with applications to Kleinian groups. Ann. Math.88, 47-61 (1968) · Zbl 0186.40603
[2] Culler, M.: Lifting representations to covering groups. Adv. Math.59, 64-70 (1986) · Zbl 0582.57001
[3] Culler, M., Shalen, P.B.: Varieties of group representations and splittings of 3-manifolds. Ann. Math.117, 109-146 (1983) · Zbl 0529.57005
[4] Eisenbud, D., Hirsch, U., Neumann, W.: Transverse foliations of seifert bundles and self homeomorphisms of the circle. Comment. Math. Helv.56, 638-660 (1981) · Zbl 0516.57015
[5] Fricke, R., Klein, F.: Vorlesungen über die Theorie der automorphen Funktionen, vol. 1. Stuttgart: B.G. Teubner 1897
[6] Fried, D.: Word maps, isotopy and entropy. Trans. Am. Math. Soc.296, 851-859 (1986) · Zbl 0647.58037
[7] Ghys, E.: Classe d’Euler et minimale exceptionel. Topology26, 93-105 (1987) · Zbl 0607.57020
[8] Goldman, W.: Discontinuous groups and the Euler class. Doctoral thesis, University of California, Berkeley (1980)
[9] Goldman, W.: Flat bundles with solvable holonomy II: Obstruction theory. Proc. Am. Math. Soc.83, 175-178 (1981) · Zbl 0483.55012
[10] Goldman, W.: Characteristic classes and representations of discrete subgroups of Lie groups. Bull. Am. Math. Soc. (New Series)6, 91-94 (1982) · Zbl 0493.57011
[11] Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math.54, 200-225 (1984) · Zbl 0574.32032
[12] Goldman, W.: Representations of fundamental groups of surfaces. In: Geometry and topology, Proceedings, University of Maryland 1983-1984. Alexander, J., Harer, J. (eds.), (Lecture Notes in Mathematics, Vol. 1167, pp. 95-117). Berlin-Heidelberg-New York: Springer 1985
[13] Goldman, W.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math.85, 263-302 (1986) · Zbl 0619.58021
[14] Goldman, W.: Projective structures with Fuchsian holonomy. J. Differ. Geom.25, 297-326 (1987) · Zbl 0595.57012
[15] Goldman, W.: Convex real projective structures on compact surfaces. J. Differ. Geom. (submitted) · Zbl 0711.53033
[16] Goldman, W.: Geometric structures and varieties of representations. In: The geometry of group representations, Goldman, W., Magid, A. (eds.). Contemp. Math. (to appear)
[17] Goldman, W., Millson, J.J.: Local rigidity of discrete groups acting on complex hyperbolic space. Invent. Math.88, 495-520 (1987) · Zbl 0627.22012
[18] Goldman, W., Millson, J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Publ. Math. I.H.E.S. (to appear) · Zbl 0678.53059
[19] Haefliger, A., Quach Ngoc Du, Appendice: Une présentation du groupe fundamental d’une orbifold. In: Structure transverse des feuilletages, Astérisque116, pp. 98-107, Société Mathématique de France, 1984 · Zbl 0556.57032
[20] Harvey, W.: Spaces of discrete groups. In: Discrete groups and automorphic functions, Proceedings of a NATO Advanced Study Institute, pp. 295-348. London-New York-San Fancisco: Academic Press 1977
[21] Hironaka, H.: Triangulations of algebraic sets. In: Algebraic geometry ? Arcata 1974, Proceedings of Symposia in Pure Mathematics, vol. 29, pp. 165-185. American Mathematical Society, Providence, Rhode Island 1975
[22] Hitchin, N.J.: The self-duality equations on Riemann surfaces. Proc. Lond. Math. Soc.55, 59-126 (1987) · Zbl 0634.53045
[23] Hirzebruch, F.: Topological methods in algebraic geometry. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0138.42001
[24] Jankins, M.: The space of homeomorphisms from a Fuchsian group toPSL(2,R). Doctoral dissertation, University of Maryland 1983
[25] Jankins, M., Neumann, W.: Homomorphisms of Fuchsian groups toPSL(2,R). Comment. Math. Helv.60, 480-495 (1985) · Zbl 0598.57007
[26] Kulkarni, R., Raymond, F.: 3-Dimensional Lorentz space-forms and Seifert fiber spaces. J. Differ. Geom.21, 231-268 (1985) · Zbl 0563.57004
[27] Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc.336 (1985) · Zbl 0598.14042
[28] Magnus, W.: The uses of 2 by 2 matrices in combinatorial group theory. A survey. Result. Math.4, 171-192 (1981) · Zbl 0468.20031
[29] Magnus, W.: Rings of Fricke characters and automorphism groups of free groups. Math. Z.170, 91-103 (1980) · Zbl 0433.20033
[30] Matsumoto, S.: Some remarks on foliatedS 1-bundles. Invent. Math.90, 343-358 (1987) · Zbl 0681.58007
[31] Milnor, J.W.: On the existence of a connection with curvature zero. Comment. Math. Helv.32, 215-223 (1958) · Zbl 0196.25101
[32] Morgan, J.W., Shalen, P.B.: Valuations, trees and degenerations of hyperbolic structures I. Ann. Math.120, 401-476 (1984) · Zbl 0583.57005
[33] Newstead, P.E.: Topological properties of some spaces of stable bundles. Topology6, 241-267 (1967) · Zbl 0201.23401
[34] Riley, R.: Holomorphically parametrized families of subgroups ofSL(2,C). Mathematika32, 248-264 (1985) · Zbl 0591.20049
[35] Steenrod, N.E.: The topology of Fiber bundles. Princeton Univ. Press 1951 · Zbl 0054.07103
[36] Sullivan, D.: Quasiconformal homeomorphisms and dynamics, II: Structural stability implies hyperbolicity. Acta Math.155, 244-260 (1986) · Zbl 0606.30044
[37] Thurston, W.P.: The geometry and topology of 3-manifolds. Princeton Univ. Press (to appear) · Zbl 0483.57007
[38] Toledo, D.: Representations of surface groups in ?PSU(n, 1) with maximum characteristic number. J. Differ. Geom. (in press) (1988)
[39] Weil, A.: On discrete subgroups of Lie groups. Ann. Math.72, 369-384 (1960);75, 578-602 (1962) · Zbl 0131.26602
[40] Whitney, H.: Elementary structure of real algebraic varieties. Ann. Math.66, 545-556 (1957) · Zbl 0078.13403
[41] Wood, J.W.: Bundles with totally disconnected structure group. Comment. Math. Helv.51, 183-199 (1971) · Zbl 0217.49202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.