Perez, R.; Gil, M. A.; Gil, P. Estimating the uncertainty associated with a variable in a finite population. (English) Zbl 0655.62006 Kybernetes 15, 251-256 (1986). This paper is concerned with the problem of estimating the uncertainty associated with a variable in a finite population. The study of this problem leads to the following conclusion: The classical measure of uncertainty, Shannon’s entropy, is not suitable for sampling from finite populations; nevertheless, by using the entropy of order \(\beta =2\), proposed by J. Havrda and F. Charvát [Kybernetika 3, 30–35 (1967; Zbl 0178.22401)] one can define an unbiased estimator of the uncertainty associated with the variable in both, the sampling with replacement and the sampling without replacement. This conclusion will be illustrated by an example. Reviewer: R. Perez Cited in 8 Documents MSC: 62D05 Sampling theory, sample surveys 62B10 Statistical aspects of information-theoretic topics Keywords:finite population; measure of uncertainty; Shannon’s entropy; unbiased estimator of the uncertainty; sampling with replacement; sampling without replacement Citations:Zbl 0178.22401 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Devijver P. A., I.E.E.E. Trans, on Computers, C.23 (1974) [2] Azorin F., Proc. F.I.S.A.L.-83, Palma de Mallorca pp 37– (1983) [3] DOI: 10.1016/0096-3003(77)90008-X · Zbl 0403.62018 · doi:10.1016/0096-3003(77)90008-X [4] DOI: 10.1016/S0022-5193(74)80057-3 · doi:10.1016/S0022-5193(74)80057-3 [5] DOI: 10.1038/163688a0 · Zbl 0032.03902 · doi:10.1038/163688a0 [6] Pielou E. C., An introduction to Mathematical Diversity (1969) · Zbl 0259.92001 [7] DOI: 10.1016/S0019-9958(70)80040-7 · Zbl 0205.46901 · doi:10.1016/S0019-9958(70)80040-7 [8] Gil M. A., Trab. de Est. e Inv. Oper. 32 pp 3– (1981) [9] DOI: 10.1016/S0019-9958(78)90659-9 · Zbl 0393.94011 · doi:10.1016/S0019-9958(78)90659-9 [10] Gil M. A., R.A.I.R.O. Rech. Opér. 16 pp 319– (1982) [11] Gil M. A., Statistica. Anno (1) pp 21– (1982) [12] Zagier D., Discussion paper No. 108, Projectgruppe ”Theoretische inodelle (1983) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.