zbMATH — the first resource for mathematics

Trigonometric version of quantum-classical duality in integrable systems. (English) Zbl 1332.82064
Summary: We extend the quantum-classical duality to the trigonometric (hyperbolic) case. The duality establishes an explicit relationship between the classical \(N\)-body trigonometric Ruijsenaars-Schneider model and the inhomogeneous twisted XXZ spin chain on \(N\) sites. Similarly to the rational version, the spin chain data fixes a certain Lagrangian submanifold in the phase space of the classical integrable system. The inhomogeneity parameters are equal to the coordinates of particles while the velocities of classical particles are proportional to the eigenvalues of the spin chain Hamiltonians (residues of the properly normalized transfer matrix). In the rational version of the duality, the action variables of the Ruijsenaars-Schneider model are equal to the twist parameters with some multiplicities defined by quantum (occupation) numbers. In contrast to the rational version, in the trigonometric case there is a splitting of the spectrum of action variables (eigenvalues of the classical Lax matrix). The limit corresponding to the classical Calogero-Sutherland system and quantum trigonometric Gaudin model is also described as well as the XX limit to free fermions.

82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
81V70 Many-body theory; quantum Hall effect
81R12 Groups and algebras in quantum theory and relations with integrable systems
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
Full Text: DOI arXiv
[1] Alexandrov, A.; Kazakov, V.; Leurent, S.; Tsuboi, Z.; Zabrodin, A., J. High Energy Phys., 1309, (2013)
[2] Alexandrov, A.; Leurent, S.; Tsuboi, Z.; Zabrodin, A., Nucl. Phys. B, 883, 173-223, (2014)
[3] Aminov, G.; Arthamonov, S.; Smirnov, A.; Zotov, A.; Levin, A.; Olshanetsky, M.; Zotov, A., J. Phys. A: Math. Theor., J. High Energy Phys., 07, 305207, (2014)
[4] Belliard, S.; Ragoucy, E., J. Phys. A, 41, 295202, (2008)
[5] Faddeev, L. D.; Takhtajan, L. A.; Reshetikhin, N. Y., Leningr. Math. J., 1, 193-225, (1990)
[6] Gaiotto, D.; Koroteev, P., J. High Energy Phys., 0513, (2013)
[7] Givental, A.; Kim, B., Commun. Math. Phys., 168, 609-642, (1995)
[8] Gorsky, A.; Zabrodin, A.; Zotov, A., J. High Energy Phys., 01, (2014)
[9] Gorsky, A.; Milekhin, A.; Bulycheva, K.; Gorsky, A., Phys. Usp., 57, 171-182, (2014), Contribution to the “Pomeranchuk-100” Volume
[10] Hasegawa, K.; Antonov, A.; Hasegawa, K.; Zabrodin, A., Commun. Math. Phys., Nucl. Phys. B, 503, 747-770, (1997)
[11] Jimbo, M., Lett. Math. Phys., 10, 63, (1985)
[12] Krichever, I.; Lipan, O.; Wiegmann, P.; Zabrodin, A., Commun. Math. Phys., 188, 267-304, (1997)
[13] Levin, A.; Olshanetsky, M.; Zotov, A.; Levin, A.; Olshanetsky, M.; Zotov, A., J. High Energy Phys., Theor. Math. Phys., 184, 1, 924-939, (2015)
[14] Mukhin, E.; Tarasov, V.; Varchenko, A.; Mukhin, E.; Tarasov, V.; Varchenko, A., St. Petersburg Math. J., SIGMA, 8, 463-472, (2012)
[15] Nekrasov, N.; Rosly, A.; Shatashvili, S., Nucl. Phys. B, Proc. Suppl., 216, 69-93, (2011)
[16] Ruijsenaars, S. N.M.; Schneider, H.; Ruijsenaars, S. N.M., Ann. Phys., Commun. Math. Phys., 110, 2, 191-213, (1987)
[17] Ruijsenaars, S. N.M., Commun. Math. Phys., 115, 127-165, (1988)
[18] Tsuboi, Z.; Zabrodin, A.; Zotov, A., J. High Energy Phys., 05, (2015)
[19] Zabrodin, A., Teor. Mat. Fys., Theor. Math. Phys., 174, 1, 52-67, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.