Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, A. A. Scale invariance of the \(\eta\)-deformed \(\mathrm{AdS}_{5} \times S^{5}\) superstring, T-duality and modified type II equations. (English) Zbl 1332.81167 Nucl. Phys., B 903, 262-303 (2016). Summary: We consider the ABF background underlying the \(\eta\)-deformed \(\mathrm{AdS}_5 \times S^5\) sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the \(\eta\)-deformed model is scale invariant. This property follows from the formal relation via T-duality between the \(\eta\)-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from \(\kappa\)-symmetry of the \(\eta\)-deformed model. All our observations apply also to \(\eta\)-deformations of \(\mathrm{AdS}_3 \times S^3 \times T^4\) and \(\mathrm{AdS}_2 \times S^2 \times T^6\) models. Cited in 1 ReviewCited in 81 Documents MSC: 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory 81T60 Supersymmetric field theories in quantum mechanics 81T20 Quantum field theory on curved space or space-time backgrounds 83E50 Supergravity 14D15 Formal methods and deformations in algebraic geometry PDF BibTeX XML Cite \textit{G. Arutyunov} et al., Nucl. Phys., B 903, 262--303 (2016; Zbl 1332.81167) Full Text: DOI arXiv OpenURL References: [1] Delduc, F.; Magro, M.; Vicedo, B.; Delduc, F.; Magro, M.; Vicedo, B., Derivation of the action and symmetries of the q-deformed \(\mathit{AdS}_5 \times S^5\) superstring, Phys. Rev. Lett., J. High Energy Phys., 1410, 5, (2014) · Zbl 1333.81322 [2] Metsaev, R. R.; Tseytlin, A. A., Type IIB superstring action in \(\mathit{AdS}_5 \times S^5\) background, Nucl. Phys. B, 533, 109, (1998) · Zbl 0956.81063 [3] Klimcik, C.; Klimcik, C., On integrability of the Yang-Baxter sigma-model, J. High Energy Phys., J. Math. Phys., 50, (2009) · Zbl 1215.81099 [4] Lunin, O.; Maldacena, J. M.; Frolov, S.; Frolov, S. A.; Roiban, R.; Tseytlin, A. A., Gauge-string duality for superconformal deformations of \(N = 4\) super Yang-Mills theory, J. High Energy Phys., J. High Energy Phys., J. High Energy Phys., 0507, (2005) · Zbl 1114.81330 [5] Grisaru, M. T.; Howe, P. S.; Mezincescu, L.; Nilsson, B.; Townsend, P. K., \(N = 2\) superstrings in a supergravity background, Phys. Lett. B, 162, 116, (1985) [6] Arutyunov, G.; Borsato, R.; Frolov, S., S-matrix for strings on η-deformed \(\mathit{AdS}_5 \times S^5\), J. High Energy Phys., 1404, (2014) [7] Arutyunov, G.; Borsato, R.; Frolov, S., Puzzles of eta-deformed \(\mathit{AdS}_5 \times S^5\) · Zbl 1388.83726 [8] Wulff, L., The type II superstring to order \(\theta^4\), J. High Energy Phys., 1307, (2013) · Zbl 1342.83436 [9] Callan, C. G.; Martinec, E. J.; Perry, M. J.; Friedan, D., Strings in background fields, Nucl. Phys. B, 262, 593, (1985) [10] Grisaru, M. T.; Nishino, H.; Zanon, D.; Grisaru, M. T.; Nishino, H.; Zanon, D., Beta function approach to the Green-Schwarz superstring, Nucl. Phys. B, Phys. Lett. B, 206, 625, (1988) · Zbl 0938.81526 [11] Bellucci, S.; Oerter, R. N., Weyl invariance of the Green-Schwarz heterotic sigma model, Nucl. Phys. B, 363, 573, (1991) [12] Hoare, B.; Tseytlin, A. A., Type IIB supergravity solution for the T-dual of the η-deformed \(\mathit{AdS}_5 \times S^5\) superstring, J. High Energy Phys., 1510, (2015) · Zbl 1388.83824 [13] Hoare, B.; Tseytlin, A. A., On integrable deformations of superstring sigma models related to \(\mathit{AdS}_n \times S^n\) supercosets, Nucl. Phys. B, 897, 448, (2015) · Zbl 1329.81317 [14] Cvetic, M.; Lu, H.; Pope, C. N.; Stelle, K. S.; Kulik, B.; Roiban, R.; Alday, L. F.; Arutyunov, G.; Frolov, S., Green-Schwarz strings in tst-transformed backgrounds, Nucl. Phys. B, J. High Energy Phys., J. High Energy Phys., 0606, 149, (2006) [15] Bergshoeff, E.; Hull, C. M.; Ortin, T.; Hassan, S. F.; Hassan, S. F.; Fukuma, M.; Oota, T.; Tanaka, H., Comments on T dualities of Ramond-Ramond potentials on tori, Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, Proc. Suppl., Prog. Theor. Phys., 103, 425, (2000) [16] Tseytlin, A. A., Sigma model approach to string theory, Int. J. Mod. Phys. A, 4, 1257, (1989) [17] Friedan, D. H., Nonlinear models in \(2 + \varepsilon\) dimensions, Ann. Phys., 163, 318, (1985) [18] Berenstein, D.; Leigh, R. G., Quantization of superstrings in Ramond-Ramond backgrounds, Phys. Rev. D, 63, (2001) [19] Hull, C. M.; Townsend, P. K., Finiteness and conformal invariance in nonlinear σ models, Nucl. Phys. B, 274, 349, (1986) [20] Tseytlin, A. A.; Tseytlin, A. A., σ model Weyl invariance conditions and string equations of motion, Phys. Lett. B, Nucl. Phys. B, 294, 383, (1987) · Zbl 1002.81533 [21] Shore, G. M.; Osborn, H., Renormalization and composite operators in nonlinear σ models, Nucl. Phys. B, Nucl. Phys. B, 294, 595, (1987) [22] Curci, G.; Paffuti, G., Consistency between the string background field equation of motion and the vanishing of the conformal anomaly, Nucl. Phys. B, 286, 399, (1987) [23] Polchinski, J.; Nakayama, Y., Scale invariance vs conformal invariance, Nucl. Phys. B, Phys. Rep., 569, 1, (2015) [24] Hollowood, T. J.; Miramontes, J. L.; Schmidtt, D. M.; Hollowood, T. J.; Miramontes, J. L.; Schmidtt, D. M., Integrable deformations of strings on symmetric spaces, J. Phys. A, J. High Energy Phys., 1411, 49, 495402, (2014) · Zbl 1305.81120 [25] Demulder, S.; Sfetsos, K.; Thompson, D. C.; Sfetsos, K.; Thompson, D. C., Spacetimes for λ-deformations, J. High Energy Phys., J. High Energy Phys., 1412, (2014) [26] Klimcik, C.; Klimcik, C., η and λ deformations as \(\mathcal{E}\)-models, Nucl. Phys. B, Proc. Suppl., Nucl. Phys. B, 900, 259, (2015) · Zbl 1331.81182 [27] Vicedo, B., Deformed integrable σ-models, classical R-matrices and classical exchange algebra on Drinfeld doubles, J. Phys. A, 48, 35, 355203, (2015) · Zbl 1422.37037 [28] Schwarz, J. H., Covariant field equations of chiral \(N = 2\)\(D = 10\) supergravity, Nucl. Phys. B, 226, 269, (1983) [29] Blumenhagen, R.; Lüst, D.; Theisen, S., Basic concepts of string theory, (2013), Springer [30] Weinberg, S., Coupling constants and vertex functions in string theories, Phys. Lett. B, 156, 309, (1985) [31] Callan, C. G.; Gan, Z., Vertex operators in background fields, Nucl. Phys. B, 272, 647, (1986) [32] Buscher, T. H., Path integral derivation of quantum duality in nonlinear sigma models, Phys. Lett. B, 201, 466, (1988) [33] Schwarz, A. S.; Tseytlin, A. A., Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys. B, 399, 691, (1993) [34] Fradkin, E. S.; Linetsky, V. Y., On space-time interpretation of the coset models in \(D < 26\) critical string theory, Phys. Lett. B, 277, 73, (1992) · Zbl 0967.81525 [35] Hoare, B.; Roiban, R.; Tseytlin, A. A., On deformations of \(\mathit{AdS}_n \times S^n\) supercosets, J. High Energy Phys., 1406, (2014) [36] Lunin, O.; Roiban, R.; Tseytlin, A. A., Supergravity backgrounds for deformations of \(\mathit{AdS}_n \times S^n\) supercoset string models, Nucl. Phys. B, 891, 106, (2015) · Zbl 1328.81182 [37] Haagensen, P. E., Duality transformations away from conformal points, Phys. Lett. B, 382, 356, (1996) [38] Drukker, N.; Gross, D. J.; Tseytlin, A. A., Green-Schwarz string in \(\mathit{AdS}_5 \times S^5\): semiclassical partition function, J. High Energy Phys., 0004, (2000) · Zbl 0959.81059 [39] Russo, J. G.; Tseytlin, A. A., A class of exact pp wave string models with interacting light cone gauge actions, J. High Energy Phys., 0209, (2002) [40] Hoare, B., Towards a two-parameter q-deformation of \(\mathit{AdS}_3 \times S^3 \times M^4\) superstrings, Nucl. Phys. B, 891, 259, (2015) · Zbl 1328.81178 [41] Kawaguchi, I.; Matsumoto, T.; Yoshida, K.; Matsumoto, T.; Yoshida, K.; Matsumoto, T.; Yoshida, K.; Matsumoto, T.; Yoshida, K., Yang-Baxter sigma models based on the CYBE, J. High Energy Phys., J. High Energy Phys., J. High Energy Phys., Nucl. Phys. B, 893, 287, (2015) · Zbl 1348.81379 [42] van Tongeren, S. J.; van Tongeren, S. J., Yang-Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory, J. High Energy Phys., 1506, (2015) · Zbl 1332.81197 [43] Arutyunov, G.; van Tongeren, S. J.; Arutyunov, G.; van Tongeren, S. J., \(\operatorname{AdS}_5 \times \operatorname{S}^5\) mirror model as a string sigma model, J. High Energy Phys., Phys. Rev. Lett., 113, (2014) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.