×

The symplectic geometry of closed equilateral random walks in 3-space. (English) Zbl 1408.53109

Summary: A closed equilateral random walk in 3-space is a selection of unit length vectors giving the steps of the walk conditioned on the assumption that the sum of the vectors is zero. The sample space of such walks with \(n\) edges is the \((2n-3)\)-dimensional Riemannian manifold of equilateral closed polygons in \(\mathbb{R}^{3}\). We study closed random walks using the symplectic geometry of the \((2n-6)\)-dimensional quotient of the manifold of polygons by the action of the rotation group \(\mathrm{SO}(3)\). { }The basic objects of study are the moment maps on equilateral random polygon space given by the lengths of any \((n-3)\)-tuple of nonintersecting diagonals. The Atiyah-Guillemin-Sternberg theorem shows that the image of such a moment map is a convex polytope in \((n-3)\)-dimensional space, while the Duistermaat-Heckman theorem shows that the pushforward measure on this polytope is Lebesgue measure on \(\mathbb{R}^{n-3}\). Together, these theorems allow us to define a measure-preserving set of “action-angle” coordinates on the space of closed equilateral polygons. The new coordinate system allows us to make explicit computations of exact expectations for total curvature and for some chord lengths of closed (and confined) equilateral random walks, to give statistical criteria for sampling algorithms on the space of polygons and to prove that the probability that a randomly chosen equilateral hexagon is unknotted is at least \(\frac{1}{2}\). { }We then use our methods to construct a new Markov chain sampling algorithm for equilateral closed polygons, with a simple modification to sample (rooted) confined equilateral closed polygons. We prove rigorously that our algorithm converges geometrically to the standard measure on the space of closed random walks, give a theory of error estimators for Markov chain Monte Carlo integration using our method and analyze the performance of our method. Our methods also apply to open random walks in certain types of confinement, and in general to walks with arbitrary (fixed) edgelengths as well as equilateral walks.

MSC:

53D30 Symplectic structures of moduli spaces
60G50 Sums of independent random variables; random walks

Software:

DLMF; polymake
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Alvarado, S., Calvo, J. A. and Millett, K. C. (2011). The generation of random equilateral polygons. J. Stat. Phys. 143 102-138. · Zbl 1222.82069 · doi:10.1007/s10955-011-0164-4
[2] Andersen, H. C. and Diaconis, P. (2007). Hit and run as a unifying device. J. Soc. Fr. Stat. & Rev. Stat. Appl. 148 5-28.
[3] Atiyah, M. F. (1982). Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14 1-15. · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[4] Avis, D. and Fukuda, K. (1992). A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8 295-313. · Zbl 0752.68082 · doi:10.1007/BF02293050
[5] Barakat, R. (1973). Isotropic random flights. J. Phys. A 6 796-804. · Zbl 0256.60063 · doi:10.1088/0305-4470/6/6/008
[6] Benham, C. J. and Mielke, S. P. (2005). DNA mechanics. Annu. Rev. Biomed. Eng. 7 21-53.
[7] Bernardi, O., Duplantier, B. and Nadeau, P. (2010). A bijection between well-labelled positive paths and matchings. Sém. Lothar. Combin. 63 Art. B63e, 13. · Zbl 1234.05036
[8] Blum, J. R. and Pathak, P. K. (1972). A note on the zero-one law. Ann. Math. Statist. 43 1008-1009. · Zbl 0245.60028 · doi:10.1214/aoms/1177692564
[9] Boneh, A. and Golan, A. (1979). Constraints redundancy and feasible region boundedness by random feasible point generator (RGPG). In Third European Congress on Operations Research-EURO III . Association of European Operational Research Societies, Leeds, UK.
[10] Borwein, D. and Borwein, J. M. (2001). Some remarkable properties of sinc and related integrals. Ramanujan J. 5 73-89. · Zbl 0991.42004 · doi:10.1023/A:1011497229317
[11] Brion, M. (1991). Cohomologie équivariante des points semi-stables. J. Reine Angew. Math. 421 125-140. · Zbl 0729.14015 · doi:10.1515/crll.1991.421.125
[12] Buonocore, A., Pirozzi, E. and Caputo, L. (2009). A note on the sum of uniform random variables. Statist. Probab. Lett. 79 2092-2097. · Zbl 1175.60044 · doi:10.1016/j.spl.2009.06.020
[13] Bustamante, C., Bryant, Z. and Smith, S. B. (2003). Ten years of tension: Single-molecule DNA mechanics. Nature 421 423-426.
[14] Calvo, J. A. (2001). The embedding space of hexagonal knots. Topology Appl. 112 137-174. · Zbl 0973.57002 · doi:10.1016/S0166-8641(99)00229-1
[15] Cannas da Silva, A. (2001). Lectures on Symplectic Geometry. Lecture Notes in Math. 1764 . Springer, Berlin. · Zbl 1016.53001 · doi:10.1007/b80865
[16] Cantarella, J., Deguchi, T. and Shonkwiler, C. (2014). Probability theory of random polygons from the quaternionic viewpoint. Comm. Pure Appl. Math. 67 1658-1699. · Zbl 1300.60026 · doi:10.1002/cpa.21480
[17] Cantarella, J., Grosberg, A. Y., Kusner, R. B. and Shonkwiler, C. (2015). The expected total curvature of random polygons. Amer. J. Math. 137 411-438. · Zbl 1357.60017 · doi:10.1353/ajm.2015.0015
[18] Caravenna, F. (2005). A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133 508-530. · Zbl 1080.60045 · doi:10.1007/s00440-005-0444-5
[19] Chan, K. S. and Geyer, C. J. (1994). Discussion: Markov chains for exploring posterior distributions. Ann. Statist. 22 1747-1758. · Zbl 0829.62080 · doi:10.1214/aos/1176325750
[20] Chazelle, B. (1993). An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10 377-409. · Zbl 0786.68091 · doi:10.1007/BF02573985
[21] Cogburn, R. (1972). The central limit theorem for Markov processes. In Proc. Sixth Berkeley Symp. Math. Statist. Probab . 2 485-512. Univ. California Press, Berkeley, CA. · Zbl 0318.60017
[22] Diao, Y., Ernst, C., Montemayor, A., Rawdon, E. J. and Ziegler, U. (2014). The knot spectrum of confined random equilateral polygons. Molecular Based Mathematical Biology 2 19-33.
[23] Diao, Y., Ernst, C., Montemayor, A. and Ziegler, U. (2011). Generating equilateral random polygons in confinement. J. Phys. A 44 405202, 16. · Zbl 1229.57004 · doi:10.1088/1751-8113/44/40/405202
[24] Diao, Y., Ernst, C., Montemayor, A. and Ziegler, U. (2012). Generating equilateral random polygons in confinement II. J. Phys. A 45 275203, 15. · Zbl 1320.60033 · doi:10.1088/1751-8113/45/27/275203
[25] Diao, Y., Ernst, C., Montemayor, A. and Ziegler, U. (2012). Generating equilateral random polygons in confinement III. J. Phys. A 45 465003, 16. · Zbl 1320.60034 · doi:10.1088/1751-8113/45/46/465003
[26] Duistermaat, J. J. and Heckman, G. J. (1982). On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69 259-268. · Zbl 0503.58015 · doi:10.1007/BF01399506
[27] Ernst, C. and Ziegler, U. Personal communication.
[28] Gawrilow, E. and Joswig, M. (2000). polymake: A framework for analyzing convex polytopes. In Polytopes-Combinatorics and Computation ( Oberwolfach , 1997). DMV Sem. 29 43-73. Birkhäuser, Basel. · Zbl 0960.68182 · doi:10.1007/978-3-0348-8438-9_2
[29] Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statist. Sci. 7 473-483.
[30] Grosberg, A. Y. (2008). Total curvature and total torsion of a freely jointed circular polymer with \(n\gg 1\) segments. Macromolecules 41 4524-4527.
[31] Guillemin, V. and Sternberg, S. (1982). Convexity properties of the moment mapping. Invent. Math. 67 491-513. · Zbl 0503.58017 · doi:10.1007/BF01398933
[32] Hausmann, J.-C. and Knutson, A. (1997). Polygon spaces and Grassmannians. Enseign. Math. (2) 43 173-198. · Zbl 0888.58007
[33] Hausmann, J.-C. and Knutson, A. (1998). The cohomology ring of polygon spaces. Ann. Inst. Fourier ( Grenoble ) 48 281-321. · Zbl 0903.14019 · doi:10.5802/aif.1619
[34] Hitchin, N. J., Karlhede, A., Lindström, U. and Roček, M. (1987). Hyper-Kähler metrics and supersymmetry. Comm. Math. Phys. 108 535-589. · Zbl 0612.53043 · doi:10.1007/BF01214418
[35] Howard, B., Manon, C. and Millson, J. (2011). The toric geometry of triangulated polygons in Euclidean space. Canad. J. Math. 63 878-937. · Zbl 1230.14067 · doi:10.4153/CJM-2011-021-0
[36] Hughes, B. D. (1995). Random Walks and Random Environments. Vol. 1: Random Walks . Clarendon, New York. · Zbl 0820.60053
[37] Kamiyama, Y. and Tezuka, M. (1999). Symplectic volume of the moduli space of spatial polygons. J. Math. Kyoto Univ. 39 557-575. · Zbl 0982.53070
[38] Kapovich, M. and Millson, J. J. (1996). The symplectic geometry of polygons in Euclidean space. J. Differential Geom. 44 479-513. · Zbl 0889.58017
[39] Khoi, V. T. (2005). On the symplectic volume of the moduli space of spherical and Euclidean polygons. Kodai Math. J. 28 199-208. · Zbl 1104.53083 · doi:10.2996/kmj/1111588046
[40] Kirwan, F. (1992). The cohomology rings of moduli spaces of bundles over Riemann surfaces. J. Amer. Math. Soc. 5 853-906. · Zbl 0804.14010 · doi:10.2307/2152712
[41] Klenin, K. V., Vologodskii, A. V., Anshelevich, V. V., Dykhne, A. M. and Frank-Kamenetskii, M. D. (1988). Effect of excluded volume on topological properties of circular DNA. Journal of Biomolecular Structure and Dynamics 5 1173-1185.
[42] Łatuszyński, K., Roberts, G. O. and Rosenthal, J. S. (2013). Adaptive Gibbs samplers and related MCMC methods. Ann. Appl. Probab. 23 66-98. · Zbl 1263.60067 · doi:10.1214/11-AAP806
[43] Lord, R. D. (1954). The use of the Hankel transform in statistics. I. General theory and examples. Biometrika 41 44-55. · Zbl 0055.12202
[44] Lovász, L. (1999). Hit-and-run mixes fast. Math. Program. 86 443-461. · Zbl 0946.90116 · doi:10.1007/s101070050099
[45] Lovász, L. and Vempala, S. (2006). Hit-and-run from a corner. SIAM J. Comput. 35 985-1005 (electronic). · Zbl 1103.52002 · doi:10.1137/S009753970544727X
[46] Lua, R. C., Moore, N. T. and Grosberg, A. Yu. (2005). Under-knotted and over-knotted polymers. II. Compact self-avoiding loops. In Physical and Numerical Models in Knot Theory (J. A. Calvo, K. C. Millett, E. J. Rawdon and A. Stasiak, eds.). Ser. Knots Everything 36 385-398. World Scientific, Singapore. · Zbl 1092.82053 · doi:10.1142/9789812703460_0020
[47] Mandini, A. (2014). The Duistermaat-Heckman formula and the cohomology of moduli spaces of polygons. J. Symplectic Geom. 12 171-213. · Zbl 1307.53072 · doi:10.4310/JSG.2014.v12.n1.a6
[48] Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics . Wiley, Chichester. · Zbl 0935.62065
[49] Marichal, J.-L. and Mossinghoff, M. J. (2008). Slices, slabs, and sections of the unit hypercube. Online J. Anal. Comb. 3 Art. 1, 11. · Zbl 1189.52011
[50] Marsden, J. and Weinstein, A. (1974). Reduction of symplectic manifolds with symmetry. Rep. Mathematical Phys. 5 121-130. · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[51] Meyer, K. R. (1973). Symmetries and integrals in mechanics. In Dynamical Systems ( Proc. Sympos. , Univ. Bahia , Salvador , 1971) 259-272. Academic Press, New York. · Zbl 0293.58009
[52] Millett, K. C. (1994). Knotting of regular polygons in \(3\)-space. J. Knot Theory Ramifications 3 263-278. · Zbl 0838.57008 · doi:10.1142/S0218216594000204
[53] Moore, N. T. and Grosberg, A. Y. (2005). Limits of analogy between self-avoidance and topology-driven swelling of polymer loops. Phys. Rev. E (3) 72 061803.
[54] Moore, N. T., Lua, R. C. and Grosberg, A. Y. (2004). Topologically driven swelling of a polymer loop. Proc. Natl. Acad. Sci. USA 101 13431-13435.
[55] Moore, N. T., Lua, R. C. and Grosberg, A. Yu. (2005). Under-knotted and over-knotted polymers. I. Unrestricted loops. In Physical and Numerical Models in Knot Theory (J. A. Calvo, K. C. Millett, E. J. Rawdon and A. Stasiak, eds.). Ser. Knots Everything 36 363-384. World Scientific, Singapore. · Zbl 1092.82054 · doi:10.1142/9789812703460_0019
[56] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., eds. (2010). NIST Handbook of Mathematical Functions . U.S. Dept. Commerce, National Institute of Standards and Technology, Washington, DC. · Zbl 1198.00002
[57] Orlandini, E. and Whittington, S. G. (2007). Statistical topology of closed curves: Some applications in polymer physics. Rev. Modern Phys. 79 611-642. · Zbl 1205.82153 · doi:10.1103/RevModPhys.79.611
[58] Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vision 25 127-154. · Zbl 1478.94072 · doi:10.1007/s10851-006-6228-4
[59] Pólya, G. (1912). On a few questions in probability theory and some definite integrals related to them. Ph.D. thesis, Eötvös Lorànd Univ., Budapest.
[60] Polya, G. (1913). Berechnung eines bestimmten Integrals. Math. Ann. 74 204-212. · doi:10.1007/BF01456040
[61] Rayleigh, L. (1919). On the problem of random vibrations, and of random flights in one, two, or three dimensions. Philosophical Magazine Series 5 37 321-347.
[62] Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab. 2 13-25 (electronic). · Zbl 0890.60061 · doi:10.1214/ECP.v2-981
[63] Sendler, W. (1975). A note on the proof of the zero-one law of J. R. Blum and P. K. Pathak: “A note on the zero-one law” ( Ann. Math. Statist . 43 (1972) 1008-1009). Ann. Probab. 3 1055-1058. · Zbl 0329.60015 · doi:10.1214/aop/1176996234
[64] Smith, R. L. (1980). Monte Carlo procedures for generating random feasible solutions to mathematical programs. In A Bulletin of the ORSA/TIMS Joint National Meeting . Univ. Pittsburgh, Pittsburgh, PA.
[65] Smith, R. L. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32 1296-1308. · Zbl 0552.65004 · doi:10.1287/opre.32.6.1296
[66] Soteros, C. Personal communication.
[67] Stanley, R. P. (1999). Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62 . Cambridge Univ. Press, Cambridge. · Zbl 0928.05001
[68] Strick, T. R., Croquette, V. and Bensimon, D. (2000). Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404 901-904.
[69] Takakura, T. (2001). Intersection theory on symplectic quotients of products of spheres. Internat. J. Math. 12 97-111. · Zbl 1110.53309 · doi:10.1142/S0129167X01000678
[70] Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22 1701-1762. · Zbl 0829.62080 · doi:10.1214/aos/1176325750
[71] Treloar, L. R. G. (1946). The statistical length of long-chain molecules. Trans. Faraday Soc. 42 77-82. · Zbl 0063.07846 · doi:10.1039/tf9464200077
[72] Varela, R., Hinson, K., Arsuaga, J. and Diao, Y. (2009). A fast ergodic algorithm for generating ensembles of equilateral random polygons. J. Phys. A 42 095204, 14. · Zbl 1158.92019 · doi:10.1088/1751-8113/42/9/095204
[73] Vologodskii, A. V., Anshelevich, V. V., Lukashin, A. V. and Frank-Kamenetskii, M. D. (1979). Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix. Nature 280 294-298.
[74] Wästlund, J. (2012). A random walk with uniformly distributed steps. MathOverflow. Available at (version: 2012-04-17).
[75] Wuite, G. J., Smith, S. B., Young, M., Keller, D. and Bustamante, C. (2000). Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404 103-106.
[76] Zirbel, L. and Millett, K. C. (2012). Characteristics of shape and knotting in ideal rings. J. Phys. A 45 225001. · Zbl 1259.82147 · doi:10.1088/1751-8113/45/22/225001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.