Bellaïche, Joël; Dimitrov, Mladen On the eigencurve at classical weight 1 points. (English) Zbl 1404.11047 Duke Math. J. 165, No. 2, 245-266 (2016). Summary: We show that the \(p\)-adic eigencurve is smooth at classical weight \(1\) points which are regular at \(p\) and give a precise criterion for étaleness over the weight space at those points. Our approach uses deformations of Galois representations. Cited in 3 ReviewsCited in 39 Documents MSC: 11F33 Congruences for modular and \(p\)-adic modular forms 11F11 Holomorphic modular forms of integral weight 11F80 Galois representations Keywords:weight one modular forms; weight \(1\) modular forms; deformations of Galois representations; eigencurve × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] J. Bellaïche, Critical \(p\)-adic \(L\)-functions , Invent. Math. 189 (2012), 1-60. · Zbl 1318.11067 · doi:10.1007/s00222-011-0358-z [2] J. Bellaïche, Eigenvarieties and p-adic L-functions , book in preparation. · Zbl 0942.65053 [3] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups , Astérisque 324 , Soc. Math. France, Paris, 2009. · Zbl 1192.11035 [4] A. Betina, Ramification of the eigencurve at classical RM points , in preparation. · Zbl 0679.32009 [5] A. Brumer, On the units of algebraic number fields , Mathematika 14 (1967), 121-124. · Zbl 0171.01105 · doi:10.1112/S0025579300003703 [6] K. Buzzard, “Eigenvarieties” in \(L\)-functions and Galois Representations (Durham, England, 2004) , London Math. Soc. Lecture Note Ser. 320 , Cambridge Univ. Press, Cambridge, 2007, 59-120. · Zbl 1230.11054 · doi:10.1017/CBO9780511721267.004 [7] G. Chenevier, Familles \(p\)-adiques de formes automorphes pour \(\mathrm{GL}_{n}\) , J. Reine Angew. Math. 570 (2004), 143-217. [8] G. Chenevier, Une correspondance de Jacquet-Langlands \(p\)-adique , Duke Math. J. 126 (2005), 161-194. · Zbl 1070.11016 · doi:10.1215/S0012-7094-04-12615-6 [9] S. Cho and V. Vatsal, Deformations of induced Galois representations , J. Reine Angew. Math. 556 (2003), 79-98. · Zbl 1041.11039 · doi:10.1515/crll.2003.025 [10] R. Coleman, Classical and overconvergent modular forms , Invent. Math. 124 (1996), 215-241. · Zbl 0851.11030 · doi:10.1007/s002220050051 [11] R. Coleman and B. Mazur, “The eigencurve” in Galois Representations in Arithmetic Algebraic Geometry (Durham, England, 1996) , London Math. Soc. Lecture Note Ser. 254 , Cambridge Univ. Press, Cambridge, 1998, 1-113. · Zbl 0932.11030 · doi:10.1017/CBO9780511662010.003 [12] P. Deligne and J.-P. Serre, Formes modulaires de poids \(1\) , Ann. Sci. Éc. Norm. Supér. (4) 7 (1974), 507-530. · Zbl 0321.10026 · doi:10.24033/asens.1277 [13] M. Dimitrov, “On the local structure of ordinary Hecke algebras at classical weight one points” in Automorphic Forms and Galois Representations, vol. 2 (Durham, England, 2011) , London Math. Soc. Lecture Note Ser. 415 , Cambridge Univ. Press, Cambridge, 2014, 1-16. [14] M. Dimitrov and E. Ghate, On classical weight one forms in Hida families , J. Théor. Nombres Bordeaux 24 (2012), 639-660. · Zbl 1271.11060 · doi:10.5802/jtnb.816 [15] M. Emsalem, H. Kisilevsky, and D. Wales, Indépendance linéaire sur \(\bar{\mathbb {Q}}\) de logarithmes \(p\)-adiques de nombres algébriques et rang \(p\)-adique du groupe des unités d’un corps de nombres , J. Number Theory 19 (1984), 384-391. · Zbl 0547.12003 · doi:10.1016/0022-314X(84)90079-9 [16] H. Hida, Galois representations into \(\mathrm{GL}_{2}(\mathbf{Z}_{p}[[X]])\) attached to ordinary cusp forms , Invent. Math. 85 (1986), 545-613. · Zbl 0612.10021 · doi:10.1007/BF01390329 [17] K. Kitagawa, “On standard \(p\)-adic \(L\)-functions of families of elliptic cusp forms” in \(p\)-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture (Boston, 1991) , Contemp. Math. 165 , Amer. Math. Soc., Providence, 1994, 81-110. · Zbl 0841.11028 · doi:10.1090/conm/165/01611 [18] B. Mazur, J. Tate, and J. Teitelbaum, On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer , Invent. Math. 84 (1986), 1-48. · Zbl 0699.14028 · doi:10.1007/BF01388731 [19] L. Nyssen, Pseudo-représentations , Math. Ann. 306 (1996), 257-283. · Zbl 0863.16012 · doi:10.1007/BF01445251 [20] R. Rouquier, Caractérisation des caractères et pseudo-caractères , J. Algebra 180 (1996), 571-586. · Zbl 0857.16013 · doi:10.1006/jabr.1996.0083 [21] A. Wiles, On ordinary \(\lambda\)-adic representations associated to modular forms , Invent. Math. 94 (1988), 529-573. · Zbl 0664.10013 · doi:10.1007/BF01394275 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.