×

zbMATH — the first resource for mathematics

A BMI approach to guaranteed cost control of discrete-time uncertain system with both state and input delays. (English) Zbl 1333.93162
Summary: In this study, the guaranteed cost control of discrete time uncertain system with both state and input delays is considered. Sufficient conditions for the existence of a memoryless state feedback guaranteed cost control law are given in the bilinear matrix inequality form, which needs much less auxiliary matrix variables and storage space. Furthermore, the design of guaranteed cost controller is reformulated as an optimization problem with a linear objective function, bilinear, and linear matrix inequalities constraints. A nonlinear semi-definite optimization solver – PENLAB is used as a solution technique. A numerical example is given to demonstrate the effectiveness of the proposed method.

MSC:
93C55 Discrete-time control/observation systems
93C41 Control/observation systems with incomplete information
93B40 Computational methods in systems theory (MSC2010)
93-04 Software, source code, etc. for problems pertaining to systems and control theory
93B17 Transformations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lin, A less conservative robust stability test for linear uncertain time-delay systems, IEEE Transactions on Automatic Control 51 (1) pp 87– (2006) · Zbl 1366.93469 · doi:10.1109/TAC.2005.861720
[2] Moon, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of Control 74 (14) pp 1447– (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[3] Gao, New results on stability of discrete-time systems with time-varying state delay, IEEE Transactions on Automatic Control 52 (2) pp 328– (2007) · Zbl 1366.39011 · doi:10.1109/TAC.2006.890320
[4] He, Output feedback stabilization for a discrete-time system with a time-varying delay, IEEE Transactions on Automatic Control 53 (10) pp 2372– (2008) · Zbl 1367.93507 · doi:10.1109/TAC.2008.2007522
[5] Chang, Adaptive guaranteed cost control of systems with uncertain parameters, IEEE Transactions on Automatic Control 17 (4) pp 474– (1972) · Zbl 0259.93018 · doi:10.1109/TAC.1972.1100037
[6] Chen, Delay-dependent guaranteed cost control for uncertain discrete-time systems with both state and input delays, Journal of the Franklin Institute 341 (5) pp 419– (2004) · Zbl 1055.93054 · doi:10.1016/j.jfranklin.2004.04.003
[7] Nian, Bilinear matrix inequality approaches to robust guaranteed cost control for uncertain discrete-time delay system, Optimal Control Applications and Methods 34 (4) pp 433– (2012) · Zbl 1302.93083 · doi:10.1002/oca.2029
[8] Nian, Robust guaranteed cost decentralized stabilization for uncertain discrete large-scale systems with delays via state feedback and output feedback, Journal of Optimization Theory and Applications 155 pp 694– (2012) · Zbl 1258.93096 · doi:10.1007/s10957-012-0087-5
[9] Yu, Optimal guaranteed cost control of discrete-time uncertain systems with both state and input delays, Journal of the Franklin Institute 338 (1) pp 101– (2001) · Zbl 0998.93512 · doi:10.1016/S0016-0032(00)00073-9
[10] Zuo, Novel optimal guaranteed cost control of uncertain discrete systems with both state and input delays, Journal of Optimization Theory and Applications 139 (1) pp 159– (2008) · Zbl 1152.93029 · doi:10.1007/s10957-008-9411-5
[11] Boyd, Linear Matrix Inequalities in System and Control Theory (1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[12] Goh, Robust synthesis via bilinear matrix inequalities, International Journal of Robust and Nonlinear Control 6 (9) pp 1079– (1996) · Zbl 0861.93015 · doi:10.1002/(SICI)1099-1239(199611)6:9/10<1079::AID-RNC270>3.0.CO;2-#
[13] Safonov MG Goh KC Ly JH Control system synthesis via bilinear matrix inequalities 1 Baltimore, MD 1994 45 49
[14] Kanev, Robust output-feedback controller design via local BMI optimization, Automatica 40 (7) pp 1115– (2004) · Zbl 1051.93042 · doi:10.1016/j.automatica.2004.01.028
[15] VanAntwerp, Globally optimal robust control for systems with time-varying nonlinear perturbations, Computers & Chemical Engineering 21 pp 125– (1997) · doi:10.1016/S0098-1354(97)00037-9
[16] VanAntwerp, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control 10 (4) pp 363– (2000) · doi:10.1016/S0959-1524(99)00056-6
[17] Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems & Control Letters 8 (4) pp 351– (1987) · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2
[18] Beran E Vandenberghe L Boyd S A global BMI algorithm based on the generalized Benders decomposition Brussels, Belgium 1997 1074 1082
[19] Fukuda, Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue problem, Computational Optimization and Applications 19 (1) pp 79– (2001) · Zbl 0979.65051 · doi:10.1023/A:1011224403708
[20] Goh, Global optimization for the biaffine matrix inequality problem, Journal of Global Optimization 7 (4) pp 365– (1995) · Zbl 0844.90083 · doi:10.1007/BF01099648
[21] Tuan DH Apkarian P Nakashima Y A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities 3 San Diego, California 1999 1851 1855 · Zbl 0957.93028
[22] Zheng, A heuristic approach to solving a class of bilinear matrix inequality problems, Systems & Control Letters 47 (2) pp 111– (2002) · Zbl 1003.93017 · doi:10.1016/S0167-6911(02)00181-0
[23] Hassibi A How J Boyd S A path-following method for solving BMI problems in control 2 San Diego, California June 1999 1385 1389
[24] Iwasaki, The dual iteration for fixed-order control, IEEE Transactions on Automatic Control 44 (4) pp 783– (1999) · Zbl 0957.93029 · doi:10.1109/9.754818
[25] Doyle, Synthesis of robust controllers and filters, IEEE Conference on Decision and Control 22 pp 109– (1983) · doi:10.1109/CDC.1983.269806
[26] Gahinet, The LMI control toolbox, IEEE Conference on Decision and Control 3 pp 2038– (1994) · Zbl 0811.93018
[27] Henrion, Solving polynomial static output feedback problems with PENBMI, IEEE Conference on Decision and Control pp 7581– (2005)
[28] Fiala J Kočvara M Stingl M PENLAB: a MATLAB solver for nonlinear semidefinite optimization http://arxiv.org/abs/1311.5240
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.