Diederich, Klas; Fornaess, John E. Applications holomorphes propres entre domaines à bord analytique réel. (Proper holomorphic mappings between real-analytic domains). (French) Zbl 0656.32013 C. R. Acad. Sci., Paris, Sér. I 307, No. 7, 321-324 (1988). Let D and D’ be bounded domains in \({\mathbb{C}}^ n\) with smooth real- analytic boundaries, and let f: \(D\to D'\) be a proper holomorphic map. The authors prove that if D and D’ are algebraic, f is biholomorphic, and \(n=2\), then f extends holomorphically to a neighborhood of \(\bar D.\) In addition, if \(n\geq 3\), then every proper holomorphic mapping f: \(D\to D'\) between bounded algebraic domains extends continuous to \(\bar D.\) Reviewer: R.Aron Cited in 7 Documents MSC: 32D15 Continuation of analytic objects in several complex variables 32H35 Proper holomorphic mappings, finiteness theorems 32C05 Real-analytic manifolds, real-analytic spaces Keywords:analytic extension; proper holomorphic mapping; bounded algebraic domains PDF BibTeX XML Cite \textit{K. Diederich} and \textit{J. E. Fornaess}, C. R. Acad. Sci., Paris, Sér. I 307, No. 7, 321--324 (1988; Zbl 0656.32013) OpenURL