Lions, Pierre Louis Remarques sur les équations linéaires elliptiques du second ordre sous forme divergence dans les domaines non bornés. (Remarks on linear second order elliptic equations in divergence form on unbounded domains). (French) Zbl 0656.35030 Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 79, 178-183 (1985). We prove the existence and uniqueness of the solution of the problem \(Au=f\), \(u\in H^ 1_ 0(\Omega)\) in the case that \(\Omega\) is an open unbounded domain in \({\mathbb{R}}^ n\), A is a second order elliptic variational operator with bounded and measurable coefficients and f belongs to \(H^{-1}(\Omega)\). Cited in 6 Documents MSC: 35J25 Boundary value problems for second-order elliptic equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 35R05 PDEs with low regular coefficients and/or low regular data Keywords:existence; uniqueness; unbounded domain; variational operator; measurable coefficients PDF BibTeX XML Cite \textit{P. L. Lions}, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 79, 178--183 (1985; Zbl 0656.35030)