×

zbMATH — the first resource for mathematics

Error analysis for absorbing boundary conditions. (English) Zbl 0656.35076
An estimate is derived for the error committed by the introduction of artificial boundaries and corresponding artificial boundary conditions when solving wave equations on unbounded domains. The estimate has two terms. One is proportional to the largest reflection coefficient for the artificial boundary condition, the maximum taken only on those rays which appear in the computation. The second term is proportional to 1/k where k is a measure of the average frequency present in the solution.

MSC:
35L20 Initial-boundary value problems for second-order hyperbolic equations
35A35 Theoretical approximation in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Chazarain, J.: Construction de la parametrix du problème mixte hyperbolique pour l’équation des ondes. C.R. Acad. Sci. Paris276, 1213-1215 (1973) · Zbl 0253.35058
[2] Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput.139, 629-651 (1977) · Zbl 0367.65051
[3] Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math.XXXII: 313-375 (1979) · Zbl 0396.76066 · doi:10.1002/cpa.3160320303
[4] Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Berlin, Heidelberg, New York: Springer 1985 · Zbl 0601.35001
[5] Kreiss, H.O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. XXIII: 277-298 (1970) · Zbl 0193.06902 · doi:10.1002/cpa.3160230304
[6] Majda, A., Osher, S.: Reflection of singularities at the boundary. Commun. Pure Appl. Math. XXVIII: 479-499 (1975) · Zbl 0307.35077 · doi:10.1002/cpa.3160280404
[7] Nirenberg, L.: Lectures on Linear Partial Differential Equations. C.B.M.S. Regional Conf. Ser. No. 17. Am. Math. Soc., Providence R.I., 1973 · Zbl 0267.35001
[8] Taylor, M.: Reflection of singularities of solutions to hyperbolic initial boundary value problems. Commun. Pure Appl. Math. XXVIII: 457-478 (1975) · Zbl 0332.35058 · doi:10.1002/cpa.3160280403
[9] Taylor, M.: Pseudodifferential Operators. Princeton N.J.: Princeton University Press 1981
[10] Trefethen, L.N., Halpern, L.: On the well-posedness of one way wave equations and absorbing boundary conditions. Math. Comput.176, 421-436 (1986) · Zbl 0618.65077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.