×

zbMATH — the first resource for mathematics

Orbital period of a satellite of a planet in the relativistic theory of gravitation and in general relativity and the possibility of experimental verification of delay due to gravitational interaction. (English. Russian original) Zbl 0656.53074
Theor. Math. Phys. 67, 319-322 (1986); translation from Teor. Mat. Fiz. 67, No. 1, 3-8 (1986).
The orbital period of a satellite revolving around a planet is calculated in the framework of the relativistic theory of gravitation and in general relativity. The difference between the theoretical predictions is amenable to experimental verification.
MSC:
53B50 Applications of local differential geometry to the sciences
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
70M20 Orbital mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. Logunov and Yu. M. Loskutov, ?Radio signal delay effect in the relativistic theory of gravitation,? Preprint 85-183, Institute of High Energy Physics, Serpukhov (1985).
[2] A. A. Logunov and Yu. M. Loskutov, ?Experimental verification of the relativistic theory of gravitation in the radio signal delay effect,? Preprint 85-184 [in Russian], Institute of High Energy Physics, Serpukhov (1985).
[3] A. A. Logunov and M. A. Mestvirishvili, Fundamentals of the Relativistic Theory of Gravitation [in Russian], State University, Moscow (1985). · Zbl 0979.83519
[4] A. A. Logunov and A. A. Vlasov, Teor. Mat. Fiz.,60, 3 (1984).
[5] A. A. Vlasov, A. A. Logunov, and M. A. Mestvirishvili, Teor. Mat. Fiz.,61, 323 (1984).
[6] A. A. Logunov and M. A. Mestvirishvili, Teor. Mat. Fiz.,61, 327 (1984).
[7] A. A. Vlasov and A. A. Logunov, Teor. Mat. Fiz.,63, 3 (1985).
[8] I. I. Shapiro, Phys. Rev. Lett.,13, 789 (1964). · doi:10.1103/PhysRevLett.13.789
[9] I. I. Shapiro et al., Phys. Rev. Lett.,26, 1132 (1971). · doi:10.1103/PhysRevLett.26.1132
[10] I. Shapiro, in: Astrophysics, Quanta, and the Theory of Relativity [Russian translation], Mir, Moscow (1982), p. 215.
[11] S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).
[12] V. A. Fock, The Theory of Space, Time and Gravitation, Oxford (1964). · Zbl 0128.20104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.