Multivalued boundary integral equations for inequality problems. The convex case. (English) Zbl 0656.73038

In the present paper the boundary integral equation method is extended to inequality problems. Here the case of convex superpotentials is considered. Using saddle-point techniques we derive certain variational inequalities on the boundary of the body with respect to the unknown boundary forces or displacements which are equivalent to multivalued boundary integral equations. The theory is illustrated by numerical examples indicating the connection of the developed method with the classical boundary element method.


74S30 Other numerical methods in solid mechanics (MSC2010)
49J40 Variational inequalities
Full Text: DOI


[1] Duvaut, G., Lions, J. L.: Les inéquations en mécanique et en physique. Paris: Dunod 1972. · Zbl 0298.73001
[2] Panagiotopoulos, P. D.: Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Basel-Boston: Birkhäuser 1985. (Rus. transl., MIR 1987). · Zbl 0656.73038
[3] Panagiotopoulos, P. D.: Nonconvex energy functions. Hemivariational inequalities and substationarity principles. Acta Mechanica42, 160-183 (1983). · Zbl 0538.73018
[4] Moreau, J. J.: La notion de sur-potentiel et les liaisons unilatérales en élastostatique. C. R. Acad. Sc. Paris267 A, 954-957 (1968). · Zbl 0172.49802
[5] Panagiotopoulos, P. D.: Dynamic and incremental variational inequality principles, differential inclusions and their applications to co-existent phases problems. Acta Mechanica40, 85-107 (1981). · Zbl 0471.49006
[6] Moreau, J. J.: On unilateral constraints, friction and plasticity, in: New variational techniques in mathematical physics, C.I.M.E. Roma: Edizioni Cremonese 1974.
[7] Frémond, M.: Etude des structures viscoélastiques stratifiées soumises à des charges harmoniques et de solides élastiques reposant sur ces structures. Thèse de doctorat d’Etat, Univ. Paris VI, 1971.
[8] Nguyen Dang Hung, Géry de Saxcé: Frictionless contact of elastic bodies by finite element method and mathematical programming technique. Computers and Structures11, 55-67 (1980). · Zbl 0433.73097
[9] Chand, R., Hang, E. J., Rim, K.: Analysis of unbounded contact problems by means of quadratic programming. J. Optim. Theory and Appl.20, 171-189 (1976). · Zbl 0313.73012
[10] Panagiotopoulos, P. D., Talaslidis, D.: A linear analysis approach to the solution of certain classes of variational inequality problems in structural analysis. Int. J. Solids Struct.16, 991-1005 (1980). · Zbl 0451.73094
[11] Bisbos, C.: A Cholesky condensation method for unilateral contact problems. S.M. Archives11, 1-23 (1986). · Zbl 0576.73112
[12] Panagiotopoulos, P. D.: A boundary integral inclusion approach to unilateral B.V.Ps. in elastostatics. Mech. Res. Comm.10, 91-96 (1983). · Zbl 0508.73097
[13] Ekeland, I., Temam, R.: Convex analysis and variational problems. Amsterdam, North Holland and New York: American Elsevier 1976. · Zbl 0322.90046
[14] Panagiotopoulos, P. D.: Convex analysis and unilateral static problems. Ing. Archiv45, 55-68 (1976). · Zbl 0339.73007
[15] Haslinger, J.: Mixed formulation of elliptic variational inequalities and its approximation. Apl. Matematiky26, 462-480 (1981). · Zbl 0483.49003
[16] Hünlich, R., Naumann, J.: On general boundary value problems and duality in linear elasticity, I; II. Apl. Matematiky23, 208-229 (1978);25, 11-32 (1980). · Zbl 0401.73025
[17] Sokolnikoff, I. S.: Mathematical theory of elasticity. New York: McGraw-Hill 1956. · Zbl 0070.41104
[18] Haslinger, J., Panagiotopoulos, P. D.: The reciprocal variational approach to the Signorini problem with friction. Approximation results. Proc. Royal Soc. of Edinburgh98, 250-265 (1984). · Zbl 0547.73096
[19] Hiava?ek, I., Haslinger, J., Ne?as, J., Lovi?ek, J.: Rie?enie varia?nych nerovnostiv mechanike. Bratislava: ALFA 1982.
[20] Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei, VIII7, 91-140 (1964). · Zbl 0146.21204
[21] Fix, G., Strang, G. J.: An analysis of the finite element method. Englewood Cliffs: Prentice Hall 1973. · Zbl 0356.65096
[22] Brebbia, C.: The boundary element method for engineers. London: Pentech Press and New York: Halstead Press 1978. · Zbl 0414.65060
[23] Kalker, J. J., van Randen, Y.: A minimum principle for frictionless elastic contact with application to non-Hertzian half-space contact problems. J. of Eng. Math.6, 193-206 (1972). · Zbl 0243.73043
[24] Bufler, H.: Derivation of the variational inequalities and extremum principles of the frictionless elastic contact problem. Comp. Meth. Appl. Mech. Eng.53, 163-182 (1985). · Zbl 0557.73097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.