×

zbMATH — the first resource for mathematics

An integral equation of the first kind for a free boundary value problem of the stationary Stokes’ equations. (English) Zbl 0656.76031
A direct method for obtaining an equivalent boundary integral equations’ system of first kind is created.
For numerical purposes a suitable representation formula for the variational equation is given in terms of integro-differential operators, which avoids the evaluation of hypersingular integrals. Following Bamberger’s idea for shifting by means of Fourier transformation, this approach is successful in this case with certain refinements, which are required for the three-dimensional free Stokes’ problem compared with his two-dimensional elastic waves. According to this case for numerical evaluation of the bilinear-form a new tool (due to Bamberger in case of two-dimensional elastic waves) is utilized.
Reviewer: S.Spassov

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q99 Partial differential equations of mathematical physics and other areas of application
76D08 Lubrication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 pp 35– (1964) · Zbl 0123.28706
[2] Bamberger , A. Approximation de la diffraction d’ondes élastiques: une nouvelle approche. I 57 1983 · Zbl 0571.73020
[3] Bamberger , A. Approximation de la diffraction d’ondes élastiques: une nouvelle approche. II 45 1983 · Zbl 0571.73020
[4] Basheleishvili, Investigation of the third and the fourth three dimensional boundary value problems of statics of an isotropic elastic body (in Russian), Trudy Inst. Prikl. Mat. Tbilisskogo Univ. 3 pp 29– (1972)
[5] Bemelmans, Gleichgewichtsfiguren zäher Flüssigkeiten mit Oberflächenspannung pp 62– (1981) · Zbl 0561.76042
[6] Faxén, Fredholmsche Integralgleichungen zu der Hydrodynamik zäher Flüssigkeiten. I, Ark. för Mat. Astr. och Fys. (14) pp 40– (1929) · JFM 55.1127.03
[7] Fischer, An integral equation procedure for the exterior threedimensional slow viscous flow, Integral Equ. Oper. Th. 5 pp 490– (1982) · Zbl 0483.76033
[8] Günter , N. M. Die Potentialtheorie und ihre Anwendungen auf Grundaufgaben der mathematischen Physik. Leipzig 1957 · Zbl 0077.09702
[9] Ha Duong, A finite element method for the double-layer potential solutions of the Neumann exterior problem, Math. Meth. in the Appl. Sci. 2 pp 191– (1980) · Zbl 0437.65083
[10] Hebeker, Ein Uzawa-Algorithmus für das stationäre Stokes-Randwertproblem mit einer freien Oberfläche, Z. Angew. Math. Mech. 61 pp 289– (1981) · Zbl 0472.76036
[11] Hebeker, Proceedings of the Fifth GAMM-Conference on Numerical Method in Fluid Mechanics pp 124– (1984)
[12] Hebeker , F. K. New hydrodynamical potentials and a free boundary value problem of the stationary Stokes equations 30 1984
[13] Hsiao, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 pp 449– (1977) · Zbl 0352.45016
[14] Hsiao, The Aubin-Nitsche lemma for integral equations, J. Integral Equ. 2 pp 299– (1981) · Zbl 0478.45004
[15] Jörgens , K. Lineare Integraloperatoren. Stuttgart 1970
[16] Kohn, An algebra of pseudodifferential operators, Comm. Pure Appl. Math. 18 pp 269– (1965) · Zbl 0171.35101
[17] Kupradze , V. D. Geglia , T. G. Basheleishvili , M. O. Burchuladze , T. V. Threedimensional problems of the mathematical theory of elasticity and thermoelasticity. Amsterdam 1979
[18] Ladyzhenskaja , O. A. The mathematical theory of viscous incompressible flow. New York 1969
[19] Leis , R. Vorlesungen über partielle Differentialgleichungen zweiter Ordnung. Mannheim 1967
[20] Nedelec , J. C. Approximation des équations intégrales en méchanique et en physique 127 1977
[21] Nedelec, Integral equations with non-integrable kernels, Integral Equ. Oper. Th. 5 pp 562– (1982) · Zbl 0479.65060
[22] Odqvist, Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten, Math. Z. 32 pp 329– (1930) · JFM 56.0713.04
[23] Pukhnachev, A plane steady-state free-boundary problem for the Navier-Stokes equations, J. Appl. Mech. Techn. Phys. 13 pp 340– (1972) · Zbl 0249.76013
[24] Pukhnachev, Two methods of approximate description of steady-state motions of a viscous incompressible liquid with a free boundary, J. Appl. Mech. Techn. Phys. 13 pp 704– (1972)
[25] Seeley , R. Topics in pseudodifferential operators. CIME 1968 169 305
[26] Smirnow, Lehrgang der Höheren Mathematik 4 (1973)
[27] Sneddon , I. H. The use of integral transforms. New York 1972 · Zbl 0237.44001
[28] Solonnikov, On a boundary value problem for a stationary system of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 pp 186– (1973) · Zbl 0313.35063
[29] Wendland, Die Behandlung von Randwertaufgaben im R3 mit Hilfe von Einfachund Doppelschichtpotentialen, Numer. Math. 11 pp 380– (1968) · Zbl 0165.18401
[30] Zhu, A boundary integral equation method for the stationary Stokes problem in 3-D pp 283– (1983)
[31] Costabel, Strong ellipticity of boundary integral operators, J. Reine Angew. Math. · Zbl 0628.35027
[32] Hebeker, Efficient boundary element methods for threedimensional exterior viscous flows, Num. Meth. PDE. 2 pp 273– (1986) · Zbl 0645.76035
[33] Stephan , E. Boundary integral equations for mixed boundary value problems, screen and transmission problems in R 3 1984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.