×

zbMATH — the first resource for mathematics

A note on the size of denoising neural networks. (English) Zbl 1365.94056
MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62M45 Neural nets and related approaches to inference from stochastic processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. Agostinelli, M. R. Anderson, and H. Lee, Adaptive multi-column deep neural networks with application to robust image denoising, in Advances in Neural Information Processing Systems, Curran, Red Hook, NY, 2013, pp. 1493–1501.
[2] A. R. Barron, Approximation and estimation bounds for artificial neural networks, Mach. Learn., 14 (1994), pp. 115–133, doi:10.1007/BF00993164.
[3] Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn., 2 (2009), pp. 1–127, doi:10.1561/2200000006.
[4] L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of the 19th International Symposium on Computational Statistics, Springer, Berlin, 2010, pp. 177–186, doi:10.1007/978-3-7908-2604-3_16.
[5] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), pp. 490–530, doi:10.1137/040616024. · Zbl 1108.94004
[6] H. C. Burger, C. J. Schuler, and S. Harmeling, Image denoising: Can plain neural networks compete with BM3D?, in Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ, 2012, pp. 2392–2399, doi:10.1109/CVPR.2012.6247952.
[7] H. C. Burger, C. Schuler, and S. Harmeling, Learning how to combine internal and external denoising methods, in Pattern Recognition, Lecture Notes in Comput. Sci. 8142, Springer, Berlin, 2013, pp. 121–130.
[8] K. Cho, Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images, in Proceedings of the 30th International Conference on Machine Learning, Curran, Red Hook, NY, 2013, pp. 432–440.
[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080–2095, doi:10.1109/TIP.2007.901238.
[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, BM3D image denoising with shape-adaptive principal component analysis, in Signal Processing with Adaptive Sparse Structured Representations, 2009.
[11] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Stoch. Model. Appl. Probab. 31, Springer, New York, 1996, doi:10.1007/978-1-4612-0711-5.
[12] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), pp. 425–455, doi:10.2307/2337118. · Zbl 0815.62019
[13] D. L. Donoho and I. M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Statist. Assoc., 90 (1995), pp. 1200–1224, doi:10.2307/2291512. · Zbl 0869.62024
[14] M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736–3745, doi:10.1109/TIP.2006.881969.
[15] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), pp. 359–366, doi:10.1016/0893-6080(89)90020-8. · Zbl 1383.92015
[16] V. Jain and S. Seung, Natural image denoising with convolutional networks, in Advances in Neural Information Processing Systems, Curran, Red Hook, NY, 2009, pp. 769–776.
[17] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, Englewood Cliffs, NJ, 1993. · Zbl 0803.62002
[18] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, Efficient backprop, in Neural Networks: Tricks of the Trade, Springer, Berlin, 1998, pp. 9–50, doi:10.1007/3-540-49430-8_2.
[19] A. Levin and B. Nadler, Natural image denoising: Optimality and inherent bounds, in Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ, 2011, pp. 2833–2840, doi:10.1109/CVPR.2011.5995309.
[20] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration, in International Conference on Computer Vision, IEEE, Piscataway, NJ, 2009, pp. 2272–2279, doi:10.1109/ICCV.2009.5459452.
[21] J. Mairal, F. Bach, and J. Ponce, Task-driven dictionary learning, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012), pp. 791–804, doi:10.1109/TPAMI.2011.156.
[22] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), pp. 629–639, doi:10.1109/34.56205.
[23] J. Portilla and E. P. Simoncelli, A parametric texture model based on joint statistics of complex wavelet coefficients, Int. J. Comput. Vision, 40 (2000), pp. 49–70, doi:10.1023/A:1026553619983. · Zbl 1012.68698
[24] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 12 (2003), pp. 1338–1351. doi:10.1109/TIP.2003.818640. · Zbl 1279.94028
[25] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268, doi:10.1016/0167-2789(92)90242-F. · Zbl 0780.49028
[26] J. L. Starck, E. J Candès, and D. L. Donoho, The curvelet transform for image denoising, IEEE Trans. Image Process., 11 (2002), pp. 670–684, doi:10.1109/TIP.2002.1014998.
[27] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in International Conference on Computer Vision, IEEE, Piscataway, NJ, 1998, pp. 839–846, doi:10.1109/ICCV.1998.710815.
[28] Y.-Q. Wang and J.-M. Morel, SURE guided Gaussian mixture image denoising, SIAM J. Imaging Sci., 6 (2013), pp. 999–1034. · Zbl 1279.68341
[29] Y. Q. Wang and J. M. Morel, Can a single image denoising neural network handle all levels of Gaussian noise?, IEEE Signal Proces. Lett., 21 (2014), pp. 1150–1153.
[30] Y. Wu, H. Zhao, and L. Zhang, Image denoising with rectified linear units, in Neural Information Processing, Springer, Cham, Switzerland, 2014, pp. 142–149, doi:10.1007/978-3-319-12643-2_18.
[31] J. Xie, L. Xu, and E. Chen, Image denoising and inpainting with deep neural networks, in Advances in Neural Information Processing Systems, Curran, Red Hook, NY, 2012, pp. 341–349.
[32] H. Yue, X. Sun, J. Yang, and F. Wu, CID: Combined Image Denoising in Spatial and Frequency Domains Using Web Images, in Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ, 2014, pp. 2933–2940, doi:10.1109/CVPR.2014.375.
[33] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, in International Conference on Computer Vision, IEEE, Piscataway, NJ, 2011, pp. 479–486, doi:10.1109/ICCV.2011.6126278.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.