Zhang, Shougui; Li, Xiaolin Boundary augmented Lagrangian method for the Signorini problem. (English) Zbl 1389.35164 Appl. Math., Praha 61, No. 2, 215-231 (2016). In this article, the authors consider an augmented Lagrangian method that is based on (i) a boundary variational formulation and (ii) a fixed point method. This boundary augmented Lagrangian method is specifically designed and analyzed for the Signorini problem of the Laplacian. The authors develop a new iterative scheme using the equivalence between the Signorini boundary conditions and a fixed-point problem. It formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Finally, it is shown by theoretical and numerical results that the novel method is efficient. Reviewer: Andreas Kleefeld (Jülich) Cited in 1 Document MSC: 35J58 Boundary value problems for higher-order elliptic systems 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 65N38 Boundary element methods for boundary value problems involving PDEs Keywords:Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Li}, Appl. Math., Praha 61, No. 2, 215--231 (2016; Zbl 1389.35164) Full Text: DOI Link References: [1] J. M. Aitchison, C. M. Elliott, J. R. Ockendon: Percolation in gently sloping beaches. IMA J. Appl. Math. 30 (1983), 269-287. · Zbl 0536.76085 [2] J. M. Aitchison, M. W. Poole: A numerical algorithm for the solution of Signorini problems. J. Comput. Appl. Math. 94 (1998), 55-67. · Zbl 0937.74071 [3] S. Amdouni, P. Hild, V. Lleras, M. Moakher, Y. Renard: A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. ESAIM, Math. Model. Numer. Anal. 46 (2012), 813-839. · Zbl 1271.74354 [4] S. Auliac, Z. Belhachmi, F. Ben Belgacem, F. Hecht: Quadratic finite elements with nonmatching grids for the unilateral boundary contact. ESAIM, Math. Model. Numer. Anal. 47 (2013), 1185-1205. · Zbl 1308.74140 [5] R. Bustinza, F. -J. Sayas: Error estimates for an LDG method applied to Signorini type problems. J. Sci. Comput. 52 (2012), 322-339. · Zbl 1311.74110 [6] F. Chouly: An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411 (2014), 329-339. · Zbl 1311.74112 [7] R. Glowinski: Numerical Methods for Nonlinear Variational Problems. Scientific Computation, Springer, Berlin, 2008. · Zbl 1139.65050 [8] H. D. Han: A direct boundary element method for Signorini problems. Math. Comput. 55 (1990), 115-128. · Zbl 0705.65084 [9] B. S. He, L. Z. Liao: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112 (2002), 111-128. · Zbl 1025.65036 [10] G. C. Hsiao, W. L. Wendland: Boundary Integral Equations. Applied Mathematical Sciences 164, Springer, Berlin, 2008. [11] K. Ito, K. Kunisch: Semi-smooth Newton methods for the Signorini problem. Appl. Math., Praha 53 (2008), 455-468. · Zbl 1199.49064 [12] A. Karageorghis: Numerical solution of a shallow dam problem by a boundary element method. Comput. Methods Appl. Mech. Eng. 61 (1987), 265-276. · Zbl 0597.76096 [13] B. N. Khoromskij, G. Wittum: Numerical Solution of Elliptic Differential Equations by Reduction to the Interface. Lecture Notes in Computational Science and Engineering 36, Springer, Berlin, 2004. · Zbl 1043.65128 [14] F. Li, X. Li: The interpolating boundary element-free method for unilateral problems arising in variational inequalities. Math. Probl. Eng. 2014 (2014), Article ID 518727, 11 pages. · Zbl 1407.49043 [15] M. Maischak, E. P. Stephan: Adaptive hp-versions of BEM for Signorini problems. Appl. Numer. Math. 54 (2005), 425-449. · Zbl 1114.74062 [16] T. A. Mel’nyk, I. A. Nakvasiuk, W. L. Wendland: Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem. Math. Methods Appl. Sci. 34 (2011), 758-775. · Zbl 1217.35019 [17] M. A. Noor: Some developments in general variational inequalities. Appl. Math. Comput. 152 (2004), 199-277. · Zbl 1134.49304 [18] A. Poullikkas, A. Karageorghis, G. Georgiou: The method of fundamental solutions for Signorini problems. IMA J. Numer. Anal. 18 (1998), 273-285. · Zbl 0901.73017 [19] Quarteroni, A.; Valli, A., Theory and application of Steklov-Poincaré operators for boundary-value problems, No. 56, 179-203 (1991), Dordrecht · Zbl 0723.65098 [20] W. Spann: On the boundary element method for the Signorini problem of the Laplacian. Numer. Math. 65 (1993), 337-356. · Zbl 0798.65106 [21] G. Stadler: Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comput. Appl. Math. 203 (2007), 533-547. · Zbl 1119.49028 [22] Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems (2008), New York [23] O. Steinbach: Boundary element methods for variational inequalities. Numer. Math. 126 (2014), 173-197. · Zbl 1291.65193 [24] F. Wang, W. Han, X. Cheng: Discontinuous Galerkin methods for solving the Signorini problem. IMA J. Numer. Anal. 31 (2011), 1754-1772. · Zbl 1315.74021 [25] S. Zhang: A projection iterative algorithm for the Signorini problem using the boundary element method. Eng. Anal. Bound. Elem. 50 (2015), 313-319. · Zbl 1403.74265 [26] S. Zhang, J. Zhu: A projection iterative algorithm boundary element method for the Signorini problem. Eng. Anal. Bound. Elem. 37 (2013), 176-181. · Zbl 1352.65601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.