×

Dynamic density estimation with diffusive Dirichlet mixtures. (English) Zbl 1388.62099

Summary: We introduce a new class of nonparametric prior distributions on the space of continuously varying densities, induced by Dirichlet process mixtures which diffuse in time. These select time-indexed random functions without jumps, whose sections are continuous or discrete distributions depending on the choice of kernel. The construction exploits the widely used stick-breaking representation of the Dirichlet process and induces the time dependence by replacing the stick-breaking components with one-dimensional Wright-Fisher diffusions. These features combine appealing properties of the model, inherited from the Wright-Fisher diffusions and the Dirichlet mixture structure, with great flexibility and tractability for posterior computation. The construction can be easily extended to multi-parameter GEM marginal states, which include, for example, the Pitman-Yor process. A full inferential strategy is detailed and illustrated on simulated and real data.

MSC:

62G07 Density estimation
60G57 Random measures
60J60 Diffusion processes
62F15 Bayesian inference

Software:

ANOVA DDP

References:

[1] Barrientos, A.F., Jara, A. and Quintana, F.A. (2012). On the support of MacEachern’s dependent Dirichlet processes and extensions. Bayesian Anal. 7 277-309. · Zbl 1330.60067 · doi:10.1214/12-BA709
[2] Bibby, B.M., Skovgaard, I.M. and Sørensen, M. (2005). Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli 11 191-220. · Zbl 1066.60071 · doi:10.3150/bj/1116340291
[3] Billingsley, P. (1968). Convergence of Probability Measures . New York: Wiley. · Zbl 0172.21201
[4] Caron, F., Davy, M. and Doucet, A. (2007). Generalized Polya urn for time-varying Dirichlet process mixtures. In Proceedings 23 rd Conference on Uncertainty in Artificial Intelligence . Vancouver.
[5] Caron, F., Davy, M., Doucet, A., Duflos, E. and Vanheeghe, P. (2008). Bayesian inference for linear dynamic models with Dirichlet process mixtures. IEEE Trans. Signal Process. 56 71-84. · Zbl 1391.62144 · doi:10.1109/TSP.2007.900167
[6] Cifarelli, D.M. and Regazzini, E. (1978). Nonparametric statistical problems under partial exchangeability: The use of associative means. (Original title: “Problemi statistici non parametrici in condizioni di scambiabilità parziale: Impiego di medie associative”.) Quaderni dell’Istituto di Matematica Finanziaria, Univ. of Torino, 3.
[7] Damien, P., Wakefield, J. and Walker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344. · Zbl 0913.62028 · doi:10.1111/1467-9868.00179
[8] De Iorio, M., Müller, P., Rosner, G.L. and MacEachern, S.N. (2004). An ANOVA model for dependent random measures. J. Amer. Statist. Assoc. 99 205-215. · Zbl 1089.62513 · doi:10.1198/016214504000000205
[9] Duan, J.A., Guindani, M. and Gelfand, A.E. (2007). Generalized spatial Dirichlet process models. Biometrika 94 809-825. · Zbl 1156.62064 · doi:10.1093/biomet/asm071
[10] Dunson, D.B. (2006). Bayesian dynamic modelling of latent trait distributions. Biostatistics 7 551-568. · Zbl 1170.62375 · doi:10.1093/biostatistics/kxj025
[11] Dunson, D.B. and Park, J.-H. (2008). Kernel stick-breaking processes. Biometrika 95 307-323. · Zbl 1437.62448 · doi:10.1093/biomet/asn012
[12] Dunson, D.B., Pillai, N. and Park, J.-H. (2007). Bayesian density regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 163-183. · Zbl 1120.62025 · doi:10.1111/j.1467-9868.2007.00582.x
[13] Dunson, D.B., Xue, Y. and Carin, L. (2008). The matrix stick-breaking process: Flexible Bayes meta-analysis. J. Amer. Statist. Assoc. 103 317-327. · Zbl 1471.62502 · doi:10.1198/016214507000001364
[14] Ethier, S.N. and Griffiths, R.C. (1993). The transition function of a Fleming-Viot process. Ann. Probab. 21 1571-1590. · Zbl 0778.60038 · doi:10.1214/aop/1176989131
[15] Ethier, S.N. and Kurtz, T.G. (1981). The infinitely-many-neutral-alleles diffusion model. Adv. in Appl. Probab. 13 429-452. · Zbl 0483.60076 · doi:10.2307/1426779
[16] Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes : Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics . New York: Wiley.
[17] Ethier, S.N. and Kurtz, T.G. (1993). Fleming-Viot processes in population genetics. SIAM J. Control Optim. 31 345-386. · Zbl 0774.60045 · doi:10.1137/0331019
[18] Favaro, S., Ruggiero, M. and Walker, S.G. (2009). On a Gibbs sampler based random process in Bayesian nonparametrics. Electron. J. Stat. 3 1556-1566. · Zbl 1326.60105 · doi:10.1214/09-EJS563
[19] Feng, S. and Wang, F.-Y. (2007). A class of infinite-dimensional diffusion processes with connection to population genetics. J. Appl. Probab. 44 938-949. · Zbl 1138.60053 · doi:10.1239/jap/1197908815
[20] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360
[21] Fuentes-García, R., Mena, R.H. and Walker, S.G. (2009). A nonparametric dependent process for Bayesian regression. Statist. Probab. Lett. 79 1112-1119. · Zbl 1159.62027 · doi:10.1016/j.spl.2009.01.005
[22] Gelfand, A.E., Kottas, A. and MacEachern, S.N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Amer. Statist. Assoc. 100 1021-1035. · Zbl 1117.62342 · doi:10.1198/016214504000002078
[23] Gelman, A. and Rubin, D. (1992). Inferences from iterative simulation using multiple sequences. Statist. Inference 7 457-472. · Zbl 1386.65060
[24] Ghosh, J.K. and Ramamoorthi, R.V. (2003). Bayesian Nonparametrics. Springer Series in Statistics . New York: Springer. · Zbl 1029.62004
[25] Griffin, J.E. and Steel, M.F.J. (2006). Order-based dependent Dirichlet processes. J. Amer. Statist. Assoc. 101 179-194. · Zbl 1118.62360 · doi:10.1198/016214505000000727
[26] Griffin, J.E. and Steel, M.F.J. (2011). Stick-breaking autoregressive processes. J. Econometrics 162 383-396. · Zbl 1441.62709 · doi:10.1016/j.jeconom.2011.03.001
[27] Hjort, N.L., Holmes, C.C., Müller, P. and Walker, S.G., eds. (2010). Bayesian Nonparametrics. Cambridge Series in Statistical and Probabilistic Mathematics 28 . Cambridge: Cambridge Univ. Press. · Zbl 1192.62080 · doi:10.1017/CBO9780511802478
[28] Ishwaran, H. and James, L.F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161-173. · Zbl 1014.62006 · doi:10.1198/016214501750332758
[29] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions. Wiley Series in Probability and Statistics : Applied Probability and Statistics . New York: Wiley. · Zbl 0868.62048
[30] Kalli, M., Griffin, J.E. and Walker, S.G. (2011). Slice sampling mixture models. Stat. Comput. 21 93-105. · Zbl 1256.65006 · doi:10.1007/s11222-009-9150-y
[31] Karlin, S. and Taylor, H.M. (1981). A Second Course in Stochastic Processes . New York: Academic Press. · Zbl 0469.60001
[32] Lijoi, A., Mena, R.H. and Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc. 100 1278-1291. · Zbl 1117.62386 · doi:10.1198/016214505000000132
[33] Lijoi, A., Mena, R.H. and Prünster, I. (2007). Controlling the reinforcement in Bayesian non-parametric mixture models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 715-740. · doi:10.1111/j.1467-9868.2007.00609.x
[34] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian Nonparametrics (N.L. Hjort, C.C. Holmes, P. Müller and S.G. Walker, eds.). Camb. Ser. Stat. Probab. Math. 80-136. Cambridge: Cambridge Univ. Press. · doi:10.1017/CBO9780511802478.004
[35] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates, I. Density estimates. Ann. Statist. 12 351-357. · Zbl 0557.62036 · doi:10.1214/aos/1176346412
[36] MacEachern, S.N. (1999). Dependent nonparametric processes. In ASA Proceedings of the Section on Bayesian Statistical Science . Alexandria, VA: American Statist. Assoc.
[37] MacEachern, S.N. (2000). Dependent Dirichlet processes. Technical report, Ohio State University.
[38] Mena, R.H., Ruggiero, M. and Walker, S.G. (2011). Geometric stick-breaking processes for continuous-time Bayesian nonparametric modeling. J. Statist. Plann. Inference 141 3217-3230. · Zbl 1216.62048 · doi:10.1016/j.jspi.2011.04.008
[39] Mena, R.H. and Walker, S.G. (2009). On a construction of Markov models in continuous time. Metron 67 303-323.
[40] Papaspiliopoulos, O. and Roberts, G.O. (2008). Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95 169-186. · Zbl 1437.62576 · doi:10.1093/biomet/asm086
[41] Petrone, S., Guindani, M. and Gelfand, A.E. (2009). Hybrid Dirichlet mixture models for functional data. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 755-782. · Zbl 1248.62079 · doi:10.1111/j.1467-9868.2009.00708.x
[42] Petrov, L.A. (2009). A two-parameter family of infinite-dimensional diffusions on the Kingman simplex. Funct. Anal. Appl. 43 279-296. · Zbl 1204.60076 · doi:10.1007/s10688-009-0036-8
[43] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102 145-158. · Zbl 0821.60047 · doi:10.1007/BF01213386
[44] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855-900. · Zbl 0880.60076 · doi:10.1214/aop/1024404422
[45] Raftery, A. and Lewis, S. (1992). One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Statist. Inference 7 493-497.
[46] Rodriguez, A. and Dunson, D.B. (2011). Nonparametric Bayesian models through probit stick-breaking processes. Bayesian Anal. 6 145-177. · Zbl 1330.62120 · doi:10.1214/11-BA605
[47] Rodriguez, A. and Ter Horst, E. (2008). Bayesian dynamic density estimation. Bayesian Anal. 3 339-365. · Zbl 1330.62180 · doi:10.1214/08-BA313
[48] Ruggiero, M. and Walker, S.G. (2009). Countable representation for infinite dimensional diffusions derived from the two-parameter Poisson-Dirichlet process. Electron. Commun. Probab. 14 501-517. · Zbl 1189.60103 · doi:10.1214/ECP.v14-1508
[49] Ruggiero, M., Walker, S.G. and Favaro, S. (2013). Alpha-diversity processes and normalized inverse-Gaussian diffusions. Ann. Appl. Probab. 23 386-425. · Zbl 1277.60129 · doi:10.1214/12-AAP846
[50] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639-650. · Zbl 0823.62007
[51] Trippa, L., Müller, P. and Johnson, W. (2011). The multivariate beta process and an extension of the Polya tree model. Biometrika 98 17-34. · Zbl 1214.62101 · doi:10.1093/biomet/asq072
[52] Walker, S.G. (2007). Sampling the Dirichlet mixture model with slices. Comm. Statist. Simulation Comput. 36 45-54. · Zbl 1113.62058 · doi:10.1080/03610910601096262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.