×

A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing. (English) Zbl 1388.62123

Summary: Two key ingredients to carry out inference on the copula of multivariate observations are the empirical copula process and an appropriate resampling scheme for the latter. Among the existing techniques used for i.i.d. observations, the multiplier bootstrap of B. Rémillard and O. Scaillet [J. Multivariate Anal. 100, No. 3, 377–386 (2009; Zbl 1157.62401)] frequently appears to lead to inference procedures with the best finite-sample properties. A. Bücher and M. Ruppert [J. Multivariate Anal. 116, 208–229 (2013; Zbl 1277.62207)] recently proposed an extension of this technique to strictly stationary strongly mixing observations by adapting the dependent multiplier bootstrap of P. L. Bühlmann [The blockwise bootstrap in time series and empirical processes. Zürich: ETH Zürichn (Diss.) (1993), Section 3.3] to the empirical copula process. The main contribution of this work is a generalization of the multiplier resampling scheme proposed by Bücher and Ruppert [loc. cit.] along two directions. First, the resampling scheme is now genuinely sequential, thereby allowing to transpose to the strongly mixing setting many of the existing multiplier tests on the unknown copula, including nonparametric tests for change-point detection. Second, the resampling scheme is now fully automatic as a data-adaptive procedure is proposed which can be used to estimate the bandwidth parameter. A simulation study is used to investigate the finite-sample performance of the resampling scheme and provides suggestions on how to choose several additional parameters. As by-products of this work, the validity of a sequential version of the dependent multiplier bootstrap for empirical processes of Bühlmann is obtained under weaker conditions on the strong mixing coefficients and the multipliers, and the weak convergence of the sequential empirical copula process is established under many serial dependence conditions.

MSC:

62G09 Nonparametric statistical resampling methods
62G05 Nonparametric estimation
60F05 Central limit and other weak theorems
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference

Software:

TwoCop
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Agarwal, G.G., Dalpatadu, R.J. and Singh, A.K. (2002). Linear functions of uniform order statistics and B-splines. Comm. Statist. Theory Methods 31 181-192. · Zbl 0991.62030
[2] Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59 817-858. · Zbl 0732.62052
[3] Auestad, B. and Tjøstheim, D. (1990). Identification of nonlinear time series: First order characterization and order determination. Biometrika 77 669-687.
[4] Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang (cas multidimensionnel mélangeant). In Nonparametric Asymptotic Statistics ( Proc. Conf. , Rouen , 1979) ( French ). Lecture Notes in Math. 821 19-45. Berlin: Springer. · Zbl 0443.62013
[5] Beare, B.K. (2010). Copulas and temporal dependence. Econometrica 78 395-410. · Zbl 1202.91271
[6] Bickel, P.J. and Wichura, M.J. (1971). Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 1656-1670. · Zbl 0265.60011
[7] Bücher, A. (2014). A note on weak convergence of the sequential multivariate empirical process under strong mixing. J. Theoret. Probab. .
[8] Bücher, A. and Dette, H. (2010). A note on bootstrap approximations for the empirical copula process. Statist. Probab. Lett. 80 1925-1932. · Zbl 1202.62055
[9] Bücher, A. and Kojadinovic, I. (2014). Supplement to “A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing.” .
[10] Bücher, A., Kojadinovic, I., Rohmer, T. and Segers, J. (2014). Detecting changes in cross-sectional dependence in multivariate time series. J. Multivariate Anal. 132 111-128. · Zbl 1360.62451
[11] Bücher, A. and Ruppert, M. (2013). Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique. J. Multivariate Anal. 116 208-229. · Zbl 1277.62207
[12] Bücher, A. and Segers, J. (2014). Extreme value copula estimation based on block maxima of a multivariate stationary time series. Extremes 17 495-528. · Zbl 1329.62222
[13] Bücher, A. and Volgushev, S. (2013). Empirical and sequential empirical copula processes under serial dependence. J. Multivariate Anal. 119 61-70. · Zbl 1277.62223
[14] Bühlmann, P. (1994). Blockwise bootstrapped empirical process for stationary sequences. Ann. Statist. 22 995-1012. · Zbl 0806.62032
[15] Bühlmann, P.L. (1993). The blockwise bootstrap in time series and empirical processes. Ph.D. thesis, ETH Zürich.
[16] Chen, X. and Fan, Y. (1999). Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series. J. Econometrics 91 373-401. · Zbl 1041.62506
[17] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley Series in Probability and Statistics . Chichester: Wiley. · Zbl 0884.62023
[18] Darsow, W.F., Nguyen, B. and Olsen, E.T. (1992). Copulas and Markov processes. Illinois J. Math. 36 600-642. · Zbl 0770.60019
[19] Deheuvels, P. (1981). A non parametric test for independence. Publications de l’Institut de Statistique de l’Université de Paris 26 29-50. · Zbl 0478.62029
[20] Dehling, H. and Philipp, W. (2002). Empirical process techniques for dependent data. In Empirical Process Techniques for Dependent Data (H. Dehling, T. Mikosch and M. Sorensen, eds.) 3-113. Boston, MA: Birkhäuser. · Zbl 1021.62036
[21] Fermanian, J.-D., Radulović, D. and Wegkamp, M. (2004). Weak convergence of empirical copula processes. Bernoulli 10 847-860. · Zbl 1068.62059
[22] Gaenssler, P. and Stute, W. (1987). Seminar on Empirical Processes. DMV Seminar 9 . Basel: Birkhäuser. · Zbl 0637.62047
[23] Genest, C., Rémillard, B. and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance Math. Econom. 44 199-213. · Zbl 1161.91416
[24] Holmes, M., Kojadinovic, I. and Quessy, J.-F. (2013). Nonparametric tests for change-point detection à la Gombay and Horváth. J. Multivariate Anal. 115 16-32. · Zbl 1294.62126
[25] Inoue, A. (2001). Testing for distributional change in time series. Econometric Theory 17 156-187. · Zbl 0976.62088
[26] Jondeau, E., Poon, S.-H. and Rockinger, M. (2007). Financial Modeling Under Non-Gaussian Distributions. Springer Finance . London: Springer. · Zbl 1138.91002
[27] Kojadinovic, I., Segers, J. and Yan, J. (2011). Large-sample tests of extreme-value dependence for multivariate copulas. Canad. J. Statist. 39 703-720. · Zbl 1284.62333
[28] Kojadinovic, I. and Yan, J. (2012). Goodness-of-fit testing based on a weighted bootstrap: A fast large-sample alternative to the parametric bootstrap. Canad. J. Statist. 40 480-500. · Zbl 1349.62224
[29] Kosorok, M.R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer Series in Statistics . New York: Springer. · Zbl 1180.62137
[30] Künsch, H.R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217-1241. · Zbl 0684.62035
[31] McNeil, A.J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management. Princeton Series in Finance . Princeton, NJ: Princeton Univ. Press. · Zbl 1089.91037
[32] Mokkadem, A. (1988). Mixing properties of ARMA processes. Stochastic Process. Appl. 29 309-315. · Zbl 0647.60042
[33] Paparoditis, E. and Politis, D.N. (2001). Tapered block bootstrap. Biometrika 88 1105-1119. · Zbl 0987.62027
[34] Patton, A., Politis, D.N. and White, H. (2009). Correction to “Automatic block-length selection for the dependent bootstrap” by D. Politis and H. White [MR2041534]. Econometric Rev. 28 372-375. · Zbl 1400.62193
[35] Patton, A.J. (2012). Copula methods for forecasting multivariate time series. In Handbook of Economic Forecasting , Vol. 2. Amsterdam: North-Holland.
[36] Politis, D.N. (2003). Adaptive bandwidth choice. J. Nonparametr. Stat. 15 517-533. · Zbl 1054.62038
[37] Politis, D.N. and Romano, J.P. (1995). Bias-corrected nonparametric spectral estimation. J. Time Series Anal. 16 67-103. · Zbl 0811.62088
[38] Politis, D.N. and White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econometric Rev. 23 53-70. · Zbl 1082.62076
[39] Rémillard, B. and Scaillet, O. (2009). Testing for equality between two copulas. J. Multivariate Anal. 100 377-386. · Zbl 1157.62401
[40] Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Statist. 4 912-923. · Zbl 0359.62040
[41] Salvadori, G., De Michele, C., Kottegoda, N.T. and Rosso, R. (2007). Extremes in Nature : An Approach Using Copulas. Water Science and Technology Library 56 . Berlin: Springer.
[42] Scaillet, O. (2005). A Kolmogorov-Smirnov type test for positive quadrant dependence. Canad. J. Statist. 33 415-427. · Zbl 1077.62036
[43] Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 764-782. · Zbl 1243.62066
[44] Shao, X. (2010). The dependent wild bootstrap. J. Amer. Statist. Assoc. 105 218-235. · Zbl 1397.62121
[45] Sklar, M. (1959). Fonctions de répartition à \(n\) dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8 229-231. · Zbl 0100.14202
[46] Tsukahara, H. (2005). Semiparametric estimation in copula models. Canad. J. Statist. 33 357-375. · Zbl 1077.62022
[47] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge: Cambridge Univ. Press. · Zbl 0910.62001
[48] van der Vaart, A.W. and Wellner, J.A. (2000). Weak Convergence and Empirical Processes , 2nd ed. New York: Springer. · Zbl 0862.60002
[49] van der Vaart, A.W. and Wellner, J.A. (2007). Empirical processes indexed by estimated functions. In Asymptotics : Particles , Processes and Inverse Problems. Institute of Mathematical Statistics Lecture Notes-Monograph Series 55 234-252. Beachwood, OH: IMS. · Zbl 1176.62050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.