×

zbMATH — the first resource for mathematics

Massively parallel algorithms for the lattice Boltzmann method on nonuniform grids. (English) Zbl 1381.76301

MSC:
76M28 Particle methods and lattice-gas methods
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. K. Aidun and J. R. Clausen, Lattice-Boltzmann method for complex flows, Ann. Rev. Fluid Mech., 42 (2010), pp. 439–472. · Zbl 1345.76087
[2] R. Ammer, M. Markl, U. Ljungblad, C. Körner, and U. Rüde, Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method, Comput. Math. Appl., 67 (2014), pp. 318–330. · Zbl 1381.76273
[3] D. Anderl, M. Bauer, C. Rauh, U. Rüde, and A. Delgado, Numerical simulation of adsorption and bubble interaction in protein foams using a lattice Boltzmann method, Food Funct., 5 (2014), pp. 755–763.
[4] P. Bailey, J. Myre, S. D. C. Walsh, D. J. Lilja, and M. O. Saar, Accelerating lattice Boltzmann fluid flow simulations using graphics processors, in Proceedings of the International Conference on Parallel Processing, 2009, pp. 550–557.
[5] D. Bartuschat and U. Rüde, Parallel multiphysics simulations of charged particles in microfluidic flows, J. Comput. Sci., 8 (2015), pp. 1–19.
[6] M. Bauer, J. Hötzer, M. Jainta, P. Steinmetz, M. Berghoff, F. Schornbaum, C. Godenschwager, H. Köstler, B. Nestler, and U. Rüde, Massively parallel phase-field simulations for ternary eutectic directional solidification, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ACM, 2015, pp. 8:1–8:12.
[7] S. Becker, S. Kniesburges, Stefan, S. Müller, A. Delgado, G. Link, M. Kaltenbacher, and M. Döllinger, Flow-structure-acoustic interaction in a human voice model, J. Acoustic. Soc. Amer., 125 (2009), pp. 1351–1361.
[8] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), pp. 511–525. · Zbl 0055.23609
[9] S. Bogner, S. Mohanty, and U. Rüde, Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method, Internat. J. Multiphase Flow, 68 (2015), pp. 71–79.
[10] H.-J. Bungartz, M. Mehl, T. Neckel, and T. Weinzierl, The PDE framework Peano applied to fluid dynamics: An efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids, Comput. Mech., 46 (2010), pp. 103–114. · Zbl 1301.76056
[11] C. Burstedde, D. Calhoun, K. Mandli, and A. R. Terrel, ForestClaw: Hybrid forest-of-octrees AMR for hyperbolic conservation laws, Adv. Parallel Comput., 25 (2014), pp. 253–262.
[12] C. Burstedde, L. C. Wilcox, and O. Ghattas, P4Est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103–1133. · Zbl 1230.65106
[13] H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, and R. Zhang, Grid refinement in lattice Boltzmann methods based on volumetric formulation, Phys., A, 362 (2006), pp. 158–167.
[14] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech., 30 (1998), pp. 329–364.
[15] J.-C. Desplat, I. Pagonabarraga, and P. Bladon, Ludwig: A parallel Lattice-Boltzmann code for complex fluids, Comput. Phys. Comm., 134 (2001), pp. 273–290. · Zbl 1032.76055
[16] D. d’Humieres, Generalized lattice-Boltzmann equations, in Rarefied Gas Dynamics: Theory and Simulations, American Institute of Aeronautics and Astronautics, 1994, pp. 450–458.
[17] D. d’Humieres, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philo. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 360 (2002), pp. 437–451. · Zbl 1001.76081
[18] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde, WaLBerla: HPC software design for computational engineering simulations, J. Comput. Sci., 2 (2011), pp. 105–112.
[19] J. Fietz, M. J. Krause, C. Schulz, P. Sanders, and V. Heuveline, Optimized hybrid parallel lattice Boltzmann fluid flow simulations on complex geometries, in Euro-Par 2012 Parallel Processing, Lecture Notes in Comput. Sci., Springer, Berlin, 2012, pp. 818–829.
[20] O. Filippova and D. Hänel, Grid refinement for lattice-BGK models, J. Comput. Phys., 147 (1998), pp. 219–228. · Zbl 0917.76061
[21] S. Freudiger, J. Hegewald, and M. Krafczyk, A parallelisation concept for a multi-physics lattice Boltzmann prototype based on hierarchical grids, Prog. Comput. Fluid Dyn., 8 (2008), pp. 168–178. · Zbl 1388.76289
[22] I. Ginzburg, F. Verhaeghe, and D. d’Humieres, Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme, Commun. Comput. Phys., 3 (2008), pp. 519–581.
[23] I. Ginzburg, F. Verhaeghe, and D. d’Humieres, Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys., 3 (2008), pp. 427–478.
[24] C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, and U. Rüde, A framework for hybrid parallel flow simulations with a trillion cells in complex geometries, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, ACM, 2013, pp. 35:1–35:12.
[25] D. Groen, O. Henrich, F. Janoschek, P. Coveney, and J. Harting, Lattice-Boltzmann methods in fluid dynamics: Turbulence and complex colloidal fluids, presented at Juelich Blue Gene/P Extreme Scaling Workshop 2011, Juelich Supercomputing Centre, 2011.
[26] D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O. Bernabeu, and P. V. Coveney, Analysing and modelling the performance of the HemeLB lattice-Boltzmann simulation environment, J. Comput. Sci., 4 (2013), pp. 412–422.
[27] S. M. Guzik, T. H. Weisgraber, P. Colella, and B. J. Alder, Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement, J. Comput. Phys., 259 (2014), pp. 461–487. · Zbl 1349.76687
[28] G. Hager, J. Treibig, J. Habich, and G. Wellein, Exploring performance and power properties of modern multi-core chips via simple machine models, in Concurrency and Computation: Practice and Experience, wiley, NewYork, 2014.
[29] M. Hasert, Multi-Scale Lattice Boltzmann Simulations on Distributed Octrees, Ph.D. thesis, RWTH Aachen University, Germany, 2014.
[30] M. Hasert, K. Masilamani, S. Zimny, H. Klimach, J. Qi, J. Bernsdorf, and S. Roller, Complex fluid simulations with the parallel tree-based Lattice Boltzmann solver Musubi, J. Comput. Sci., 5 (2014), pp. 784–794.
[31] X. He and L.-S. Luo, Lattice Boltzmann model for the Incompressible Navier-€“Stokes equation, J. Stat. Phys., 88 (1997), pp. 927–944. · Zbl 0939.82042
[32] V. Heuveline, M. J. Krause, and J. Latt, Towards a hybrid parallelization of lattice Boltzmann methods, Comput. Math. Appl., 58 (2009), pp. 1071–1080. · Zbl 1189.76408
[33] V. Heuveline and J. Latt, The OpenLB Project: An open source and object oriented implementation of lattice Boltzmann methods, Internat. J. Modern Phys. C, 18 (2007), pp. 627–634. · Zbl 1388.76293
[34] D. Kandhai, W. Soll, S. Chen, A. Hoekstra, and P. Sloot, Finite-Difference Lattice-BGK methods on nested grids, Comput. Phys. Commun., 129 (2000), pp. 100–109. · Zbl 0976.76067
[35] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20 (1999), pp. 359–392. · Zbl 0915.68129
[36] M. J. Krause, T. Gengenbach, and V. Heuveline, Hybrid parallel simulations of fluid flows in complex geometries: Application to the human lungs, in Euro-Par 2010 Parallel Processing Workshops, Lecture Notes in Comput. Sci. 6586, Springer, Berlin, 2011, pp. 209–216.
[37] D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard, Advances in multi-domain lattice Boltzmann grid refinement, J. Comput. Phys., 231 (2012), pp. 4808–4822. · Zbl 1246.76131
[38] J. Latt, Choice of Units in Lattice Boltzmann Simulations, tech. report, LBMethod.org (2008).
[39] LB3D, http://ccs.chem.ucl.ac.uk/lb3d.
[40] M. Mehl, T. Neckel, and P. Neumann, Navier-€“Stokes and Lattice-€“Boltzmann on octree-like grids in the Peano framework, Internat. J. Numer. Methods Fluids, 65 (2011), pp. 67–86. · Zbl 1427.76188
[41] H. Meyerhenke, Dynamic load balancing for parallel numerical simulations based on repartitioning with disturbed diffusion, in Proceedings of the 15th International Conference on Parallel and Distributed Systems, 2009, pp. 150–157.
[42] H. Meyerhenke, B. Monien, and T. Sauerwald, A new diffusion-based multilevel algorithm for computing graph partitions of very high quality, in Proceedings of the IEEE International Symposium on Parallel and Distributed Processing, 2008, pp. 1–13.
[43] A. A. Mohamad and A. Kuzmin, A critical evaluation of force term in lattice Boltzmann method, natural convection problem, Internat. J. Heat Mass Transfer, 53 (2010), pp. 990–996. · Zbl 1406.76073
[44] P. Neumann and T. Neckel, A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids, Comput. Mech., 51 (2013), pp. 237–253. · Zbl 1312.76051
[45] Palabos, http://www.palabos.org/.
[46] Y. Peng, C. Shu, Y. T. Chew, X. D. Niu, and X. Y. Lu, Application of multi-block approach in the immersed boundary-€“lattice Boltzmann method for viscous fluid flows, J. Comput. Phys., 218 (2006), pp. 460–478. · Zbl 1161.76552
[47] K. Pickl, M. Hofmann, T. Preclik, H. Köstler, A.-S. Smith, and U. Rüde, Parallel simulations of self-propelled microorganisms, in Parallel Computing: Accelerating Computational Science and Engineering (CSE), Adv. Parallel Comput. 25, IOS Press, Amsterdam, 2014, pp. 395–404.
[48] Y. Qian, D. d’Humieres, and P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhysics Lett., 17 (1992), p. 479. · Zbl 1116.76419
[49] A. Randles, Modeling Cardiovascular Hemodynamics Using the Lattice Boltzmann Method on Massively Parallel Supercomputers, Ph.D. thesis, Harvard University, Cambridge, MA, 2013.
[50] M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. van den Akker, A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes, Internat. J. Numer. Methods Fluids, 51 (2006), pp. 439–468. · Zbl 1276.76060
[51] M. Schönherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger, and M. Krafczyk, Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs, Comput. Math. Appl., 61 (2011), pp. 3730–3743.
[52] J. Tölke, S. Freudiger, and M. Krafczyk, An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations, Comput. & Fluids, 35 (2006), pp. 820–830. · Zbl 1177.76332
[53] D. Yu, R. Mei, and W. Shyy, A multi-block lattice Boltzmann method for viscous fluid flows, Internat. J. Numer. Methods Fluids, 39 (2002), pp. 99–120. · Zbl 1036.76051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.