×

zbMATH — the first resource for mathematics

On wave propagation and uniqueness in nonviscous fluid dynamics. (English) Zbl 0657.76060
A compressible barotropic (or incompressible) fluid occupies an unbounded region outside of a rigid body. In particular it is shown that a perturbation remains inside of a bounded region provided that the fastest ray velocity satisfies a simple condition.
Reviewer: G.Boillat
MSC:
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] J. Serrin , Mathematical Principles of Classical Fluid Dynamics , in Handbuch der Physik , vol. XIII / 1 , Springer-Verlag ( 1959 ), 125 - 263 . MR 108116
[2] J. Serrin , On the Uniqueness of Compressible Fluids Motions , Arch. Rational Mech. Anal. , 3 ( 1959 ), 271 - 288 . MR 106646 | Zbl 0089.19103 · Zbl 0089.19103 · doi:10.1007/BF00284180
[3] C.H. Wilcox , Initial-Boundary Value Problems for Linear Hyperbolic Partial Differential Equations of the Second-Order , Arch. Rational Mech. Anal. , 10 ( 1962 ), 361 - 400 . MR 145203 | Zbl 0168.08201 · Zbl 0168.08201 · doi:10.1007/BF00281202
[4] M.E. Gurtin , The Linear Theory of Elasticity, in Handbuch der Physik , vol. VIa/2 , Springer-Verlag ( 1971 ), 1 - 295 .
[5] B. Carbonaro and R. Russo , Energy Inequalities and the Domain of Influence Theorem in Classical Elastodynamics , J. Elasticity , 14 ( 1984 ), 163 - 174 . MR 747058 | Zbl 0547.73011 · Zbl 0547.73011 · doi:10.1007/BF00041663
[6] B. Carbonaro and R. Russo , The Uniqueness Problem in the Dynamical Theory of Linear Hyperelasticity in unbounded domains, in Atti del VII Congresso Nazionale AIMETA ( Trieste , October 2-5, 1984 ) vol. II , 47 - 55 .
[7] P. Muratori , Teoremi di Unicitd per un Problema Relativo alle Equazioni di Navier-Stokes , Bollettino U.M.I. , 4 ( 1971 ), 592 - 613 . MR 296545 | Zbl 0234.76018 · Zbl 0234.76018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.