×

zbMATH — the first resource for mathematics

A categorification of twisted Heisenberg algebras. (English) Zbl 1405.17017
Summary: We categorify a quantized twisted Heisenberg algebra associated to a finite subgroup of \(\mathrm{SL}(2, \mathbb{C})\).

MSC:
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B65 Infinite-dimensional Lie (super)algebras
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Cautis, S.; Licata, A., Heisenberg categorification and Hilbert schemes, Duke Math. J., 161, 2469-2547, (2012) · Zbl 1263.14020
[2] Cautis, S.; Sussan, J., On a categorical boson-fermion correspondence, CMP, 336, 649-669, (2015) · Zbl 1327.17009
[3] Frenkel, I.; Jing, N.; Wang, W., Twisted vertex representations via spin groups and the mckay correspondence, Duke Math. J., 111, 51-96, (2002) · Zbl 1100.17502
[4] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex operator algebras and the monster, Pure Appl. Math., vol. 134, (1988), Academic Press · Zbl 0674.17001
[5] Jing, N., Twisted vertex representations of quantum affine algebras, Invent. Math., 102, 663-690, (1990) · Zbl 0692.17006
[6] Jing, N., New twisted quantum affine algebras, (Representations and Quantizations, Shanghai, 1998, (2000), China High. Educ. Press Beijing), 263-274 · Zbl 0992.17011
[7] Jing, N.; Wang, W., Twisted vertex representations and spin characters, Math. Z., 239, 715-746, (2002) · Zbl 1100.17503
[8] Khovanov, M., Heisenberg algebra and a graphical calculus · Zbl 1304.18019
[9] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347, (2009) · Zbl 1188.81117
[10] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups III, Quantum Topol., 1, 1-92, (2010)
[11] Kleshchev, A., Linear and projective representations of symmetric groups, Cambridge Tracts in Math., vol. 163, (2005), Cambridge University Press · Zbl 1080.20011
[12] Nazarov, M., Young’s symmetrizers for projective representations of the symmetric group, Adv. Math., 127, 190-257, (1997) · Zbl 0930.20011
[13] Rouquier, R., 2-Kac-Moody algebras
[14] Sergeev, A., The Howe duality and the projective representations of symmetric groups, Represent. Theory, 3, 1, 416-434, (1999) · Zbl 0999.17014
[15] Shan, P.; Vasserot, E., Heisenberg algebras and rational double affine Hecke algebras, J. Amer. Math. Soc., 25, 959-1031, (2012) · Zbl 1287.20008
[16] Stroppel, C.; Webster, B., Quiver Schur algebras and q-Fock space
[17] Wan, J.; Wang, W., Lectures on spin representation theory of symmetric groups, Bull. Inst. Math. Acad. Sin., 7, 91-164, (2012) · Zbl 1280.20013
[18] Wang, W., Equivariant K-theory, generalized symmetric products, and twisted Heisenberg algebra, CMP, 234, 101-127, (2003) · Zbl 1029.19007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.