zbMATH — the first resource for mathematics

Dynamics of minimally coupled dark energy in spherical halos of dark matter. (English) Zbl 1337.83105
Summary: We analyse the evolution of scalar field dark energy in the spherical halos of dark matter at the late stages of formation of gravitationally bound systems in the expanding Universe. The dynamics of quintessential dark energy at the center of dark matter halo strongly depends on the value of effective sound speed \(c_s\) (in units of speed of light). If \(c_s\sim 1\) (classical scalar field) then the dark energy in the gravitationally bound systems is only slightly perturbed and its density is practically the same as in cosmological background. The dark energy with small value of sound speed (\(c_s< 0.1\)), on the contrary, is important dynamical component of halo at all stages of their evolution: linear, non-linear, turnaround, collapse, virialization and later up to current epoch. These properties of dark energy can be used for constraining the value of effective sound speed \(c_s\) by comparison the theoretical predictions with observational data related to the large scale gravitationally bound systems.
83F05 Cosmology
85A40 Cosmology
83C75 Space-time singularities, cosmic censorship, etc.
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
70F15 Celestial mechanics
3DEX; ASCL; dverk
Full Text: DOI
[1] Yoo, J; Watanabe, Y, Theoretical models of dark energy, Int. J. Mod. Phys. D, 21, 1230002, (2012) · Zbl 1263.83022
[2] Copeland, EJ; Sami, M; Tsujikawa, S, Dynamics of dark energy, Int. J. Mod. Phys. D, 15, 1753-1936, (2006) · Zbl 1203.83061
[3] Tsujikawa, S: Dark energy: investigation and modeling, arXiv:1004.1493 · Zbl 1213.83011
[4] Caldwell, RR, Perspectives on dark energy, Sp. Sci. Rev., 148, 347-362, (2009)
[5] Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010) · Zbl 1200.85001
[6] Wolschin, G. (ed.): Lectures on Cosmology: Accelerated Expansion of the Universe. Lecture Notes in Physics. Springer, Berlin, Heidelberg (2010) · Zbl 1186.83008
[7] Ruiz-Lapuente, P. (ed.): Dark Energy: Observational and Theoretical Approaches. Cambridge University Press, Cambridge (2010)
[8] Novosyadlyj, B., Pelykh, V., Shtanov, Y, Zhuk, A.: In: Shulga V. (ed.) Dark Energy: Observational Evidence and Theoretical Models, p. 381. Akademperiodyka (2013)
[9] Durrer, R., Maartens, R.: Dark energy and dark gravity: theory overview. Gen. Relativ. Gravit. 40, 301 (2008) · Zbl 1137.83303
[10] Amendola, L; Appleby, S; Bacon, D; Baker, T; etal., Cosmology and fundamental physics with the euclid satellite, Living Rev. Relativ., 16, 1, (2013)
[11] Xia, J-Q; Li, H; Zhang, X, Dark energy constraints after the new Planck data, Phys. Rev. D, 88, 063501, (2013)
[12] Rest, A; Scolnic, D; Foley, RJ; Huber, ME; etal., Cosmological constraints from measurements of type ia supernovae discovered during the first 1.5 year of the pan-STARRS1 survey, Astrophys. J., 795, 44, (2014)
[13] Cheng, C; Huang, Q-G, Dark side of the universe after Planck data, Phys. Rev. D, 89, 043003, (2014)
[14] Shafer, D; Huterer, D, Chasing the phantom: a closer look at type ia supernovae and the dark energy equation of state, Phys. Rev. D, 89, 063510, (2014)
[15] Novosyadlyj, B; Sergijenko, O; Durrer, R; Pelykh, V, Constraining the dynamical dark energy parameters: Planck-2013 vs WMAP9, J. Cosmol. Astropart. Phys., 05, 030, (2014)
[16] Sergijenko, O; Novosyadlyj, B, Sound speed of scalar field dark energy: weak effects and large uncertainties, Phys. Rev. D, 91, 083007, (2015)
[17] Gunn, JE; Gott, JR, On the infall of matter into clusters of galaxies and some effects on their evolution, Astrophys. J., 176, 1-19, (1972)
[18] Press, WH; Schechter, P, Formation of galaxies and clusters of galaxies by self-similar gravitational condensation, Astrophys. J., 187, 425, (1974)
[19] Peebles, P.J.E.: The Large Scale Structure of the Universe. Princeton University Press, Princeton (1980)
[20] Bond, J; Cole, S; Efstathiou, G; Kaiser, N, Excursion set mass functions for hierarchical Gaussian fluctuations, Astrophys. J., 379, 440, (1991)
[21] Bower, RG, The evolution of groups of galaxies in the press-schechter formalism, Mon. Not. R. Astron. Soc., 248, 332, (1991)
[22] Lahav, O; Rees, MJ; Lilje, PB; Primack, JR; etal., Dynamical effects of the cosmological constant, Mon. Not. R. Astron. Soc., 251, 128, (1991)
[23] Lacey, C; Cole, S, Merger rates in hierarchical models of galaxy formation, Mon. Not. R. Astron. Soc., 262, 627, (1993)
[24] Eke, VR; Cole, S; Frenk, CS, Cluster evolution as a diagnostic for omega, Mon. Not. R. Astron. Soc., 282, 263, (1996)
[25] Wang, LM; Steinhardt, PJ, Cluster abundance constraints for cosmological models with a time-varying, spatially inhomogeneous energy component with negative pressure, Astrophys. J., 508, 483, (1998)
[26] Cooray, A; Sheth, R, Halo models of large scale structure, Phys. Rep., 372, 1, (2002) · Zbl 0999.85005
[27] Weller, J; Battye, R; Kneissl, R, Constraining dark energy with sunyaev-zel’dovich cluster surveys, Phys. Rev. Lett., 88, 231301, (2002)
[28] Battye, RA; Weller, J, Constraining cosmological parameters using sunyaev-zel’dovich cluster surveys, Phys. Rev. D, 68, 083506, (2003)
[29] Kulinich, Yu; Novosyadlyj, B, Spherical collapse and mass function of rich clusters in models with curvature and cosmological constant, J. Phys. Stud., 7, 234, (2003)
[30] Weinberg, N; Kamionkowski, M, Constraining dark energy from the abundance of weak gravitational lenses, Mon. Not. R. Astron. Soc., 341, 251, (2003)
[31] Shaw, DJ; Mota, DF, An improved semi-analytical spherical collapse model for non-linear density evolution, Astrophys. J. Suppl. Ser., 174, 277, (2008)
[32] Yu, Kulinich; Novosyadlyj, B; Apunevych, S, Nonlinear power spectra of dark and luminous matter in the halo model of structure formation, Phys. Rev. D, 88, 103505, (2013)
[33] Kuhlen, M; Vogelsberger, M; Angulo, R, Numerical simulations of the dark universe: state of the art and the next decade, Phys. Dark Univ., 1, 50, (2012)
[34] Baldi, M, Dark energy simulations, Phys. Dark Univ., 1, 162, (2012)
[35] Mota, D; Bruck, C, On the spherical collapse model in dark energy cosmologies, Astron. Astrophys., 421, 71-81, (2004) · Zbl 1068.83515
[36] Maor, I; Lahav, O, On virialization with dark energy, J. Cosmol. Astropart. Phys., 07, 003, (2005)
[37] Manera, M; Mota, DF, Cluster number counts dependence on dark energy inhomogeneities and coupling to dark matter, Mon. Not. Roy. Astron. Soc., 371, 1373, (2006)
[38] Nunes, NJ; Mota, DF, Structure formation in inhomogeneous dark energy models, Mon. Not. Roy. Astron. Soc., 368, 751, (2006)
[39] Creminelli, P; D’Amico, G; Norena, J; Senatore, L; Vernizzi, F, Spherical collapse in quintessence models with zero speed of sound, J. Cosmol. Astropart. Phys., 03, 027, (2010)
[40] Lim, EA; Sawicki, I; Vikman, A, Dust of dark energy, J. Cosmol. Astropart. Phys., 05, 012, (2010)
[41] Wang, Q., Fan, Z.: Simulation studies of dark energy clustering induced by the formation of dark matter halos. Phys. Rev. D 85, 023002 (2012)
[42] Bardeen, JM, Gauge-invariant cosmological perturbations, Phys. Rev. D, 22, 1882-1905, (1980)
[43] Padmanabhan, T.: Theoretical Astrophysics, Volume III: Galaxies and Cosmology. Cambridge University Press, Cambridge (2002) · Zbl 1005.85001
[44] Silk, J, Cosmic black-body radiation and galaxy formation, Astrophys. J., 151, 459, (1968)
[45] Bond, JR; Szalay, AS, The collisionless damping of density fluctuations in an expanding universe, Astrophys. J., 274, 443, (1983)
[46] Tsizh, M; Novosyadlyj, B, Dynamics of dark energy in collapsing halo of dark matter, Adv. Astron. Sp. Sci., 5, 51-56, (2015)
[47] Durrer, R.: The Cosmic Microwave Background. Cambridge University Press, Cambridge (2008) · Zbl 0897.58062
[48] Leistedt, B., Rassat, A., Refregier, A., Starck, J.-L.: 3DEX: fast fourier-bessel decomposition of spherical 3D surveys, astrophysics source code Library, record ascl:1111.011; arXiv:1111.3591v3
[49] Novosyadlyj, B, The large scale structure of the universe: theory and observations, J. Phys. Stud., 11, 226, (2007)
[50] http://www.cs.toronto.edu/NA/dverk.f.gz
[51] Hnatyk, BI; Lukash, VN; Novosyadlyj, BS, Great attractor-like fluctuations: observational manifestations and theoretical constraints, Astron. Astrophys., 300, 1-12, (1995)
[52] Planck Collaboration, Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582 · Zbl 1203.83061
[53] Lewis, A; Challinor, A; Lasenby, A, Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models, Astrophys. J., 538, 473, (2000)
[54] Bardeen, JM; Bond, JR; Kaiser, N; Szalay, AS, The statistics of peaks of Gaussian random fields, Astrophys. J., 304, 15, (1986)
[55] Novosyadlyj, B; Kulinich, Yu; Tsizh, M, Dynamics of dark energy in the gravitational fields of matter inhomogeneities, Phys. Rev. D, 90, 063004, (2014)
[56] Tsizh, M., Novosyadlyj, B., Kulinich, Yu.: Distribution of dark energy in the vicinity of compact objects. In: WDS’14 Proceedings of contributed papers—physics, pp. 21-25. (2014)
[57] Mehrabi, A., Basilakos, S., Pace, F.: How clustering dark energy affects matter perturbations, arXiv:1504.01262 (2015)
[58] Tully, RB; Courtois, H; Hoffman, Y; Pomarede, D, The laniakea supercluster of galaxies, Nature, 513, 71, (2014)
[59] Hu, W, Structure formation with generalized dark matter, Astrophys. J., 506, 485, (1998)
[60] Hu, W.: Covariant linear perturbation formalism, [arXiv:astro-ph/0402060]
[61] Gordon, C; Hu, W, A low CMB quadrupole from dark energy isocurvature perturbations, Phys. Rev. D, 70, 083003, (2004)
[62] Unnikrishnan, S.: Can cosmological observations uniquely determine the nature of dark energy? Phys. Rev. D 78, 063007 (2008)
[63] Abramo, LR; Batista, RC; Liberato, L; Rosenfeld, R, Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios, Phys. Rev. D, 79, 023516, (2009)
[64] Amendola, L, Linear and nonlinear perturbations in dark energy models, Phys. Rev. D, 69, 103524, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.