×

zbMATH — the first resource for mathematics

Newton method in the context of quaternion analysis. (English) Zbl 1334.65085
Summary: In this paper we propose a version of Newton method for finding zeros of a quaternion function of a quaternion variable, based on the concept of quaternion radial derivative. Several numerical examples involving elementary functions are presented.

MSC:
65H05 Numerical computation of solutions to single equations
Software:
Quaternions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fueter, R., Die funktionentheorie der differetialgleichungen \(\operatorname{\Delta} u = 0\) und \(\operatorname{\Delta} \operatorname{\Delta} u = 0\) mit vier reellen variablen, Comm. Math. Helv., 7, 307-330, (1934-35) · JFM 61.1131.05
[2] Fueter, R., Über die analytische darstellung der regulären funktionen einer quaternionenvariablen, Comment. Math. Helv., 8, 1, 371-378, (1935) · JFM 62.0120.04
[3] Gürlebeck, K.; Habetha, K.; Spröig, W., Holomorphic functions in the plane and n-dimensional space, (2008), Birkhäuser Verlag Basel
[4] H.R. Malonek, Quaternions in applied sciences. A historical perspective of a mathematical concept, in: 17th International Conference on the Applications of Computer Science and Mathematics on Architecture and Civil Engineering, Weimar, 2003.
[5] Janovská, D.; Opfer, G., Computing quaternionic roots by newton’s method, Electron. Trans. Numer. Anal., 26, 82-102, (2007) · Zbl 1160.65016
[6] Kalantari, B., Algorithms for quaternion polynomial root-finding, J. Complexity, 29, 3-4, 302-322, (2013) · Zbl 1326.65060
[7] Brackx, F.; Delanghe, R.; Sommen, F., Clifford analysis, (1982), Pitman Boston-London-Melbourne · Zbl 0529.30001
[8] Gürlebeck, K.; Spröig, W., Quaternionic and cliford calculus for physicists and engineers, (1997), John Wiley & Sons
[9] Sudbery, A., Quaternionic analysis, Math. Proc. Camb. Phil. Soc., 85, 199-225, (1979) · Zbl 0399.30038
[10] Spröig, W., On operators and elementary functions in Clifford analysis, J. Anal. Appl., 18, 2, 349-360, (1999) · Zbl 0962.30026
[11] Georgiev, S.; Morais, J.; Sprössig, W., New aspects on elementary functions in the context of quaternionic analysis, Cubo, 14, 1, 93-110, (2012) · Zbl 1255.30051
[12] Niven, I., Equations in quaternions, Am. Math. Mon., 48, 654-661, (1941) · Zbl 0060.08002
[13] De Leo, S.; Ducati, G.; Leonardi, V., Zeros of unilateral quaternionic polynomials, Electron. J. Linear Algebra, 15, 297-313, (2006) · Zbl 1151.15303
[14] Gentili, G.; Struppa, D. C.; Vlacci, F., The fundamental theorem of algebra for Hamilton and Cayley numbers, Math. Z., 259, 4, 895-902, (2008) · Zbl 1144.30004
[15] Jia, Z.; Cheng, X.; Zhao, M., A new method for roots of monic quaternionic quadratic polynomial, Comput. Math. Appl., 58, 9, 1852-1858, (2009) · Zbl 1189.65090
[16] Pogorui, A.; Shapiro, M., On the structure of the set of zeros of quaternionic polynomials, Complex Var. Theory Appl., 49, 6, 379-389, (2004) · Zbl 1160.30353
[17] Serôdio, R.; Siu, L.-S., Zeros of quaternion polynomials, Appl. Math. Lett., 14, 2, 237-239, (2001) · Zbl 0979.30030
[18] Janovská, D.; Opfer, G., The classification and the computation of the zeros of quaternionic, two-sided polynomials, Numer. Math., 115, 1, 81-100, (2010) · Zbl 1190.65075
[19] Janovská, D.; Opfer, G., Zero points of general quaternionic polynomials, AIP Conf. Proc., 1558, 554, (2013)
[20] Ortega, J. M.; Rheinboldt, W. C., Iterative solution of nonlinear equations in several variables, (1970), Academic Press New York · Zbl 0241.65046
[21] Traub, J. F., Iterative methods for the solution of equations, (1964), Prentice-Hall, Inc. Englewood Cliffs, NJ · Zbl 0121.11204
[22] Falcão, M. I.; Miranda, F., Quaternions: A Mathematica package for quaternionic analysis, (Murgante, B.; Gervasi, O.; Iglesias, A.; Taniar, D.; Apduhan, B., Computational Science and Its Applications - ICCSA 2011, Lecture Notes in Computer Science, vol. 6784, (2011), Springer-Verlag Berlin Heidelberg), 200-214
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.