zbMATH — the first resource for mathematics

Computation of a general integral of Fermi-Dirac distribution by McDougall-Stoner method. (English) Zbl 1334.65060
Summary: We extended the method of J. McDougall and E. C. Stoner [Philos. Trans. R. Soc. Lond., Ser. A 237, 67–104 (1938; Zbl 0018.16201)] to the computation of a general integral of the Fermi-Dirac distribution, \(F(\eta)\). When \(\eta > 0\), the new method splits \(F(\eta)\) into a sum of three parts, \(A(\eta), B(\eta)\), and \(C(\eta)\), and integrates them exactly and/or numerically by means of the double-exponential quadrature rules. As \(\eta\) increases, \(B(\eta) / F(\eta)\) damps algebraically while \(C(\eta) / F(\eta)\) decays exponentially. Thus, they can be ignored when \(\eta\) exceeds certain threshold values depending on the input error tolerance. When \(A(\eta)\) is exactly computable and \(\eta\) is sufficiently large such that \(B(\eta)\) and \(C(\eta)\) are negligible, the new method was 60–1000 times faster than the numerical integration of \(F(\eta)\). Even if \(B(\eta)\) and/or \(C(\eta)\) are not negligible, their smallness and rapid decay significantly accelerate their numerical quadrature so that the speed-up factor becomes 3–20 unless \(\eta\) is less than 2.0–4.5. On the other hand, when \(A(\eta)\) is numerically integrated, the speed-up factor diminishes to 2–5. Still, the superiority of the new method to the numerical integration of \(F(\eta)\) is unchanged.

65D30 Numerical integration
60E05 Probability distributions: general theory
Full Text: DOI
[1] Ashcroft, N. W.; Mermin, N. D., Solid state physics, (1976), Holt, Rinehalt, and Winston Dumfries · Zbl 1118.82001
[2] Weiss, A.; Hildebrandt, W.; Thomas, H.-C.; Ritter, H., Cox and giuli’s principles of stellar structure, ext, (2006), Cambridge Sci. Publ. Cambridge
[3] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes: the art of scientific computing, (2007), Cambridge Univ. Press Cambridge · Zbl 1132.65001
[4] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions, (2010), Cambridge Univ. Press Cambridge) · Zbl 1198.00002
[5] Blakemore, J. S., Approximations for Fermi-Dirac integrals, especially the function \(\mathcal{F}_{1 / 2}(\eta)\) used to describe electron density in a semiconductor, Solid State Electron., 25, 1067-1076, (1982)
[6] Chandrasekhar, S., An introduction to the study of stellar structure, (1939), Univ. Chicago Press Chicago, (reprint, Dover Publ., New York, 1958) · Zbl 0022.19207
[7] Pichon, B., Numerical calculation of the generalized Fermi-Dirac integrals, Comput. Phys. Commun., 55, 127-136, (1989)
[8] Aparicio, J. M., A simple and accurate method for the calculation of generalized Fermi functions, Astrophys. J. Suppl. Ser., 117, 627-632, (1998)
[9] Odrzywolek, A., Gaussian integration with rescaling of abscissas and weights, Comput. Phys. Commun., 182, 2533-2539, (2011) · Zbl 1261.65027
[10] Melrose, D. B.; Mushtag, A., Plasma dispersion function for a Fermi-Dirac distribution, Phys. Plasmas, 17, 122103, (2010)
[11] Srivastava, H. M.; Chaudhry, M. A.; Qadir, A.; Tassaddiq, A., Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions, Russ. J. Math. Phys., 18, 107-121, (2011) · Zbl 1252.82021
[12] Gong, Z.; Zejda, L.; Dappen, W.; Aparicio, J. M., Generalized Fermi-Dirac functions and derivatives: properties and evaluation, Comp. Phys. Comm., 136, 294-309, (2001) · Zbl 0985.85002
[13] Takahashi, H.; Mori, H., Double exponential formulas for numerical integration, Publ. RIMS, Kyoto Univ., 9, 721-741, (1974) · Zbl 0293.65011
[14] T. Ooura, Numerical Integration (Quadrature) - DE Formula (Almighty Quadrature), <http://www.kurims.kyoto-u.ac.jp/∼ooura/intde.html>. · Zbl 1132.65015
[15] McDougall, J.; Stoner, E. C., The computation of Fermi-Dirac functions, Philos. Trans. R. Soc. London Ser. A., 237, 67-104, (1938) · JFM 64.1500.04
[16] Sommerfeld, A., Zur elektronentheorie der metalle auf grund der fermischen statistik. I. teil: allgemeines, strömungs und austrittsvorgänge, Z. Phys., 47, 1-32, (1927) · JFM 54.0987.06
[17] Fukushima, T., Analytical computation of generalized Fermi-Dirac integrals by truncated Sommerfeld expansions, Appl. Math. Comput., 234, 417-433, (2014) · Zbl 1305.82058
[18] Dingle, R., The Fermi-Dirac integrals \(\mathcal{F}_p(\eta) = (p!)^{- 1} \int_0^\infty \varepsilon^p \left(e^{\varepsilon - \eta} + 1\right) d \varepsilon\), Appl. Sci. Res., 6, 225-239, (1957) · Zbl 0077.23704
[19] Cloutman, L. D., Numerical evaluation of the Fermi-Dirac integrals, Astrophys. J. Suppl. Ser., 71, 677-699, (1989)
[20] Goano, M., Series expansion of the Fermi-Dirac integral \(\mathcal{F}_j(x)\) over the entire domain of real j and x, Solid State Electron., 36, 217-221, (1993)
[21] Goano, M., Algorithm 745: computation of the complete and incomplete Fermi-Dirac integral, ACM Trans. Math. Software, 21, 221-232, (1995) · Zbl 0887.65021
[22] Blinnikov, S. I.; Dunina-Barkovskaya, N. V.; Nadyozhin, D. K., Equation of state of a Fermi gas: approximations for various degrees of relativism and degeneracy, Astrophys. J. Suppl. Ser., 106, 171-203, (1996)
[23] Johns, S. M.; Ellis, P. J.; Lattimer, J. M., Numerical approximation to the thermodynamic integrals, Astrophys. J., 473, 1020-1028, (1996)
[24] Bhagat, V.; Bhattacharya, R.; Roy, D., On the evaluation of generalized Bose-Einstein and Fermi-Dirac integrals, Comput. Phys. Comm., 155, 7-20, (2003)
[25] D. Wood, The Computation of Polylogarithms, Tech. Rep. 15-92, Comp. Lab., Univ. Kent, Canterbury, UK, 1992.
[26] Macleod, A. J., Algorithm 779: Fermi-Dirac functions of order −1/2, 1/2, 3/2, 5/2, ACM Trans. Math. Software, 24, 1-12, (1998) · Zbl 0917.65017
[27] Sagar, R. P., A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals, Comput. Phys. Commun., 66, 271-275, (1991) · Zbl 0997.65520
[28] Gautschi, W., Generalized Fermi-Dirac functions and derivatives: properties and evaluation, Comput. Phys. Commun., 74, 233-309, (1993)
[29] Natarajan, A.; Mohankumar, N., On the numerical evaluation of the generalized Fermi-Dirac integrals, Comput. Phys. Commun., 76, 48-50, (1993) · Zbl 0855.65012
[30] Mohankumar, N.; Natarajan, A., A note on the evaluation of the generalized Fermi-Dirac integral, Astrophys. J., 458, 233-235, (1996)
[31] Natarajan, A.; Mohankumar, N., An accurate method for the generalized Fermi-Dirac integral, Comput. Phys. Commun., 137, 361-365, (2001) · Zbl 0985.65012
[32] Piessens, R.; de Doncker-Kapenga, E.; Überhuber, C.; Kahaner, D., QUADPACK, A subroutine package for automatic integration, (1983), Springer New York · Zbl 0508.65005
[33] Encke, J. F., Berliner astronomisches jahrbuch für 1857, (1854), Königlich Akademie der Wissenschaften Berlin
[34] Brouwer, D.; Clemence, G. M., Methods of celestial mechanics, (1961), Academic Press New York
[35] Fukushima, T., Generalization of encke’s method and its application to the orbital and rotational motions of celestial bodies, Astron. J., 112, 1263-1277, (1996)
[36] Dunster, T. M., Uniform asymptotic approximations for incomplete Riemann zeta functions, J. Comput. Appl. Math., 190, 339-353, (2013) · Zbl 1091.33016
[37] Corless, R. M.; Gonnet, G. H.; Hare, D. E.G.; Jeffrey, D. J.; Knuth, D. E., On the Lambert W function, Adv. Comput. Math., 5, 329-359, (1996) · Zbl 0863.65008
[38] Fukushima, T., Precise and fast computation of Lambert W-functions without transcendental function evaluations, J. Comput. Appl. Math., 244, 77-89, (2013) · Zbl 1260.65013
[39] Fukushima, T., A fast procedure solving gauss’ form of kepler’s equation, Celestial Mech. Dyn. Astron., 70, 115-130, (1998) · Zbl 0922.70002
[40] Wolfram, S., The Mathematica book, (2003), Wolfram Research Inc./Cambridge Univ. Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.