×

zbMATH — the first resource for mathematics

An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem. (English) Zbl 1382.65372
Summary: This paper proposes and analyzes an a posteriori error estimator for the finite element multi-scale discretization approximation of the Steklov eigenvalue problem. Based on the a posteriori error estimates, an adaptive algorithm of shifted inverse iteration type is designed. Finally, numerical experiments comparing the performances of three kinds of different adaptive algorithms are provided, which illustrate the efficiency of the adaptive algorithm proposed here.

MSC:
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
iFEM
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ainsworth, M., Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal., 42, 2320-2341, (2005) · Zbl 1085.65102
[2] Ainsworth, M.; Oden, J. T., A posteriori error estimates in the finite element analysis, (2011), Wiley-Interscience New York
[3] Alonso, A.; Russo, A. D., Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods, J. Comput. Appl. Math., 223, 177-197, (2009) · Zbl 1156.65094
[4] Andreev, A. B.; Todorov, T. D., Isoparametric finite element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal., 24, 309-322, (2004) · Zbl 1069.65120
[5] Armentano, M. G.; Padra, C., A posteriori error estimates for the Steklov eigenvalue problem, Appl. Numer. Math., 58, 593-601, (2008) · Zbl 1140.65078
[6] Armentano, M. G.; Padra, C.; Rodríguez, R.; Scheble, M., An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations, Comput. Methods Appl. Mech. Eng., 200, 178-188, (2011) · Zbl 1225.74078
[7] Babuska, I.; Osborn, J. E., Eigenvalue problems, (Ciarlet, P. G.; Lions, J. L., Finite Element Methods (Part I), Handbook of Numerical Analysis, vol. 2, (1991), Elsevier Science Publishers, North-Holland), 641-787 · Zbl 0875.65087
[8] Babuska, I.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng., 12, 1597-1615, (1978) · Zbl 0396.65068
[9] Bi, H.; Yang, Y., A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 217, 9669-9678, (2011) · Zbl 1222.65121
[10] Bi, H.; Yang, Y., Multiscale discretization scheme based on the Rayleigh quotient iterative method for the Steklov eigenvalue problem, Math. Probl. Eng., 2012, (2012) · Zbl 1264.65184
[11] Bi, H.; Yang, Y.; Li, H., Local and parallel finite element discretizations for eigenvalue problems, SIAM J. Sci. Comput., 35, 6, 2575-2597, (2013)
[12] Bramble, J. H.; Osborn, J. E., Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, (Aziz, A. K., Math Foundations of the Finite Element Method with Applications to PDE, (1972), Academic Press New York), 387-408 · Zbl 0264.35055
[13] Cao, L.; Zhang, L.; Allegretto, W.; Lin, Y., Multiscale asymptotic method for Steklov eigenvalue equations in composite media, SIAM J. Numer. Anal., 51, 1, 273-296, (2013) · Zbl 1267.65172
[14] Carstensen, C.; Gedicke, J., An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity, SIAM J. Numer. Anal., 50, 3, 1029-1057, (2012) · Zbl 1254.65123
[15] Carstensen, C.; Hu, J.; Orlando, A., Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal., 45, 1, 68-82, (2007) · Zbl 1165.65072
[16] Chen, L., Ifem: an integrated finite element method package in MATLAB, (2009), University of California at Irvine, Technical report
[17] Dahmen, W.; Rohwedder, T.; Schneider, R.; Zeiser, A., Adaptive eigenvalue computation: complexity estimates, Numer. Math., 110, 3, 277-312, (2008) · Zbl 1157.65029
[18] Dai, X.; He, L.; Zhou, A., Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues, IMA J. Numer. Anal., (2014), first published online December 22
[19] Dai, X.; Xu, J.; Zhou, A., Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110, 313-355, (2008) · Zbl 1159.65090
[20] Dauge, M., Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions, Lecture Notes in Mathematics, vol. 1341, (1988), Springer-Verlag Berlin · Zbl 0668.35001
[21] Garau, E. M.; Morin, P., Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J. Numer. Anal., 31, 914-946, (2011) · Zbl 1225.65107
[22] Hackbusch, W., Multigrid methods and applications, (1985), Springer New York · Zbl 0577.65118
[23] Han, J.; Zhang, Z.; Yang, Y., A new adaptive mixed finite element method based on residual type A posterior error estimates for the Stokes eigenvalue problem, Numer. Methods Partial Differ. Equ., 31, 31-53, (2015) · Zbl 1338.65237
[24] Hu, J.; Huang, Y.; Lin, Q., The lower bounds for eigenvalues of elliptic operators by nonconforming finite element methods, (6 Dec 2011)
[25] Hu, J.; Shi, Z., The best L2 norm error estimate of the lower order finite element methods for the fourth order problem, J. Comput. Math., 30, 449-460, (2012) · Zbl 1274.65292
[26] Huang, J.; Lü, T., The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems, J. Comput. Math., 22, 5, 719-726, (2004) · Zbl 1069.65123
[27] Li, Q.; Lin, Q.; Xie, H., Nonconforming finite element approximations of the Steklov eigenvalue problems and its lower bound approximations, Appl. Math., 58, 129-151, (2013) · Zbl 1274.65296
[28] Li, M.; Lin, Q.; Zhang, S., Extrapolation and superconvergence of the Steklov eigenvalue problem, Adv. Comput. Math., 33, 25-44, (2010) · Zbl 1213.65141
[29] Li, Q.; Yang, Y., A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 36, 129-139, (2011) · Zbl 1220.65160
[30] Li, H.; Yang, Y., The adaptive finite element method based on multi-scale discretizations for eigenvalue problems, Comput. Appl. Math., 65, 1086-1102, (2013) · Zbl 1266.65196
[31] Lin, Q.; Xie, H., A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems, (Conference Applications of Mathematics 2012 in Honor of the 60th Birthday of Michal Kěížek, (2012), Institute of Mathematics AS CR Prague), 134-143 · Zbl 1313.65298
[32] Mehrmann, V.; Miedlar, A., Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations, Numer. Linear Algebra Appl., 18, 3, 387-409, (2011) · Zbl 1249.65226
[33] Morin, P.; Nochetto, R. H.; Siebert, K., Convergence of adaptive finite element methods, SIAM Rev., 44, 631-658, (2002) · Zbl 1016.65074
[34] Rannacher, R.; Westenberger, A.; Wollner, W., Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error, J. Numer. Math., 18, 4, 303-327, (2010) · Zbl 1222.65123
[35] Rohwedder, T.; Schneider, R.; Zeiser, A., Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization, Adv. Comput. Math., 34, 1, 43-66, (2011) · Zbl 1208.65160
[36] Russo, A. D.; Alonso, A. E., A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problem, Comput. Appl. Math., 62, 4100-4117, (2011) · Zbl 1236.65142
[37] Shaidurov, V., Multigrid methods for finite elements, (1995), Kluwer Academic Publics Netherlands · Zbl 0837.65118
[38] Solin, P.; Giani, S., An iterative adaptive finite element method for elliptic eigenvalue problems, J. Comput. Appl. Math., 236, 4582-4599, (2012) · Zbl 1259.65167
[39] Verfürth, R., A review of a posteriori error estimates and adaptive mesh-refinement techniques, (1996), Wiley-Teubner New York · Zbl 0853.65108
[40] Xie, H., A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal., 1-17, (2013)
[41] Yang, Y.; Bi, H., Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems, Sci. China Math., 57, 6, 1319-1329, (2014) · Zbl 1306.65274
[42] Yang, Y.; Bi, H.; Han, J.; Yu, Y., The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems, SIAM J. Sci. Comput., 37, 6, A2583-A2606, (2015) · Zbl 1327.65229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.