zbMATH — the first resource for mathematics

Computational and in vitro studies of blast-induced blood-brain barrier disruption. (English) Zbl 1400.92177

92C37 Cell biology
92-08 Computational methods for problems pertaining to biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX Cite
Full Text: DOI arXiv
[1] P. Abdul-Muneer, H. Schuetz, F. Wang, M. Skotak, J. Jones, S. Gorantla, M. C. Zimmerman, N. Chandra, and J. Haorah, Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast, Free Radical Biol. Med., 60 (2013), pp. 282–291.
[2] D. Al-Anbaki, F. Meyer, A. Edan, and H. Lippert, The spectrum of war-like injuries in children and teenagers during a post-war wave of violence in Iraq, Zent. bl. Chirurgie, 133 (2008), pp. 306–309.
[3] P. W. Alford, B. E. Dabiri, J. A. Goss, M. A. Hemphill, M. D. Brigham, and K. K. Parker, Blast-induced phenotypic switching in cerebral vasospasm, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 12705–12710.
[4] J. D. Anderson, Modern Compressible Flow with Historical Perspective, McGraw-Hill, Boston, 2003.
[5] I. E. András, H. Pu, M. A. Deli, A. Nath, B. Hennig, and M. Toborek, Hiv-\(1\) tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells, J. Neurosci. Res., 74 (2003), pp. 255–265.
[6] D. S. Balsara, A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231 (2012), pp. 7476–7503. · Zbl 1284.76261
[7] D. S. Balsara, M. Dumbser, and R. Abgrall, Multidimensional HLLC Riemann solver for unstructured meshes–with application to Euler and MHD flows, J. Comput. Phys., 261 (2014), pp. 172–208. · Zbl 1349.76426
[8] W. Banks, Blood-brain barrier as a regulatory interface, Forum Nutr,, 63 (2010), pp. 102–110.
[9] W. A. Banks, A. B. Coon, S. M. Robinson, A. Moinuddin, J. M. Shultz, R. Nakaoke, and J. E. Morley, Triglycerides induce leptin resistance at the blood-brain barrier, Diabetes, 53 (2004), pp. 1253–1260.
[10] W. A. Banks, P. Pagliari, R. Nakaoke, and J. E. Morley, Effects of a behaviorally active antibody on the brain uptake and clearance of amyloid beta proteins, Peptides, 26 (2005), pp. 287–294.
[11] R. S. Bell, A. H. Vo, C. J. Neal, J. Tigno, R. Roberts, C. Mossop, J. R. Dunne, and R. A. Armonda, Military traumatic brain and spinal column injury: A 5-year study of the impact blast and other military grade weaponry on the central nervous system, J. Trauma Acute Care Surgery, 66 (2009), pp. S104–S111.
[12] T. A. Bigelow, T. Northagen, T. M. Hill, and F. C. Sailer, The destruction of escherichia coli biofilms using high-intensity focused ultrasound, Ultrasound Med. Biol., 35 (2009), pp. 1026–1031.
[13] J. Bower, D. Maraganore, B. Peterson, S. McDonnell, J. Ahlskog, and W. Rocca, Head trauma preceding pd a case-control study, Neurology, 60 (2003), pp. 1610–1615.
[14] D. A. Calhoun, C. Helzel, and R. J. LeVeque, Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains, SIAM Rev., 50 (2008), pp. 723–752. · Zbl 1155.65061
[15] I. Cernak, Chronic traumatic encephalopathy in a National Football League player, Neurosurgery, 57 (2005), pp. 128–134.
[16] I. Cernak and L. J. Noble-Haeusslein, Traumatic brain injury: An overview of pathobiology with emphasis on military populations, J. Cerebral Blood Flow Metab., 30 (2009), pp. 255–266.
[17] I. Cernak, J. Savic, Z. Malicevic, G. Zunic, P. Radosevic, I. Ivanovic, and L. Davidovic, Involvement of the central nervous system in the general response to pulmonary blast injury, J. Trauma-Injury, Infect. Critical Care, 40 (1996), pp. 100S–104S.
[18] I. Cernak, Z. Wang, J. Jiang, X. Bian, and J. Savic, Ultrastructural and functional characteristics of blast injury-induced neurotrauma, J. Trauma-Injury Infect. Critical Care, 50 (2001), pp. 695–706.
[19] H. Chen, A. A. Brayman, W. Kreider, M. R. Bailey, and T. J. Matula, Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels, Ultrasound Med. Biol., 37 (2011), pp. 2139–2148.
[20] A. Chertock, S. Karni, and A. Kurganov, Interface tracking method for compressible multifluids, ESAIM Math. Model. Numer. Anal., 42 (2008), pp. 991–1019. · Zbl 1232.76030
[21] Clawpack Development Team, Clawpack Software, Version 5.2.2, 2014.
[22] C. Coisne et al., Mouse syngenic in vitro blood–brain barrier model: A new tool to examine inflammatory events in cerebral endothelium, Laboratory Invest., 85 (2005), pp. 734–746.
[23] M.-P. Dehouck, P. Jolliet-Riant, F. Brée, J.-C. Fruchart, R. Cecchelli, and J.-P. Tillement, Drug transfer across the blood-brain barrier: Correlation between in vitro and in vivo models, J. Neurochem., 58 (1992), pp. 1790–1797.
[24] M. J. Del Razo and R. J. LeVeque, Computational study of shock waves propagating through air-plastic-water interfaces, Bull. Braz. Math. Soc. (N.S.), to appear. · Zbl 1382.76182
[25] M. J. Del Razo and R. J. LeVeque, Numerical Methods for Interface Coupling of Compressible and Almost Incompressible Fluids, SIAM J. Sci. Comput., submitted. · Zbl 1459.65214
[26] M. J. Del Razo, Y. Morofuji, J. S. Meabon, B. R. Huber, E. R. Peskind, W. A. Banks, P. D. Mourad, R. J. LeVeque, and D. G. Cook, A Computational Experiment for Blood-Brain Barrier Distruption, Github https://github.com/maojrs/BBB_experiment/ (2015).
[27] M. A. Deli, C. S. Ábrahám, Y. Kataoka, and M. Niwa, Permeability studies on in vitro blood–brain barrier models: Physiology, pathology, and pharmacology, Cellular Molec. Neurobiol., 25 (2005), pp. 59–127.
[28] O. B. Dimitrijevic, S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic, Effects of the chemokine ccl\(2\) on blood–brain barrier permeability during ischemia–reperfusion injury, J. Cerebral Blood Flow Metab., 26 (2006), pp. 797–810.
[29] J. P. Dreier, Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans, in J. Neurotrauma, 31 (2014), pp. 425–436.
[30] D. M. Erlanger, K. C. Kutner, J. T. Barth, and R. Barnes, Forum neuropsychology of sports-related head injury: Dementia pugilistica to post concussion syndrome, Clinical Neuropsych., 13 (1999), pp. 193–209.
[31] K. Fagnan, R. J. LeVeque, and T. J. Matula, Computational models of material interfaces for the study of extracorporeal shock wave therapy, Commun. Appl. Math. Comput. Sci., 8 (2013), pp. 159–194. · Zbl 1278.92018
[32] K. M. Fagnan, High-resolution Finite Volume Methods for Extracorporeal Shock Wave Therapy, Ph.D. thesis, University of Washington, Seattle, WA, 2010.
[33] M. Fey, Multidimensional Upwinding I. The Method of Transport for Solving the Euler Equations, J. Comput. Phys., 143 (1998), pp. 159–180. · Zbl 0932.76050
[34] M. Fey, Multidimensional upwinding. Part II. Decomposition of the Euler equations into advection equations, J. Comput. Phys., 143 (1998), pp. 181–199. · Zbl 0932.76051
[35] S. Fleminger, D. Oliver, S. Lovestone, S. Rabe-Hesketh, and A. Giora, Head injury as a risk factor for Alzheimer’s disease: The evidence \(10\) years on; a partial replication, J. Neurol. Neurosurgery Psychiatry, 74 (2003), pp. 857–862.
[36] M. Fujita, E. P. Wei, and J. T. Povlishock, Intensity-and interval-specific repetitive traumatic brain injury can evoke both axonal and microvascular damage, J. Neurotrauma, 29 (2012), pp. 2172–2180.
[37] J. Goeller, A. Wardlaw, D. Treichler, J. O’Bruba, and G. Weiss, Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury, J. Neurotrauma, 29 (2012), pp. 1970–1981.
[38] L. E. Goldstein et al., Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model, Sci. Translat. Med., 4 (2012), 134ra60.
[39] R. K. Gupta and A. Przekwas, Mathematical models of blast-induced TBI: Current status, challenges, and prospects, Front. Neurol., 4 (2013), 00059.
[40] J. Ho and S. Kleiven, Dynamic response of the brain with vasculature: A three-dimensional computational study, J. Biomechan., 40 (2007), pp. 3006–3012.
[41] C. W. Hoge, D. McGurk, J. L. Thomas, A. L. Cox, C. C. Engel, and C. A. Castro, Mild traumatic brain injury in US soldiers returning from Iraq, New England J. Med., 358 (2008), pp. 453–463.
[42] B. R. Huber et al., Blast exposure causes early and persistent aberrant phospho-and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury, J. Alzheimer’s Disease, 37 (2013), pp. 309–323.
[43] C. D. Hue, S. Cao, S. F. Haider, K. V. Vo, G. B. Effgen, E. Vogel III, M. B. Panzer, C. R. Bass, D. F. Meaney, and B. Morrison III, Blood-brain barrier dysfunction after primary blast injury in vitro, J. Neurotrauma, 30 (2013), pp. 1652–1663.
[44] C. D. Hue, S. Cao, C. R. “Dale” Bass, D. F. Meaney, and B. Morrison III, Repeated primary blast injury causes delayed recovery, but not additive disruption, in an in vitro blood–brain barrier model, J. Neurotrauma, 31 (2014), pp. 951–960.
[45] M. Ivings, D. Causon, and E. Toro, On Riemann solvers for compressible liquids, Internat. J. Numer. Methods Fluids, 28 (1998), pp. 395–418. · Zbl 0918.76047
[46] A. Jacob, B. Hack, E. Chiang, J. G. Garcia, R. J. Quigg, and J. J. Alexander, C5a alters blood-brain barrier integrity in experimental lupus, FASEB J., 24 (2010), pp. 1682–1688.
[47] R. Jan, P. Jonas, K. Christian, P. Anna, G. Dorothee, K. Gerd, P. Joerg, et al., Molecular and structural transmembrane determinants critical for embedding claudin-5 into tight junctions reveal distinct four helix bundle arrangement, Biochem. J., 464 (2014), pp. 49–60.
[48] S. Kleiven, Predictors for traumatic brain injuries evaluated through accident reconstructions, Stapp Car Crash J., 51 (2007), pp. 81–114.
[49] Y. Kucherov, G. K. Hubler, and R. G. DePalma, Blast induced mild traumatic brain injury/concussion: A physical analysis, J. Appl. Phys., 112 (2012), 104701.
[50] E. J. Lehman, M. J. Hein, S. L. Baron, and C. M. Gersic, Neurodegenerative causes of death among retired National Football League players, Neurology, 79 (2012), pp. 1970–1974.
[51] G. I. Lemoine, Numerical Modeling of Poroelastic-Fluid Systems Using High-Resolution Finite Volume Methods, Ph.D. Thesis, University of Washington, Seattle, WA, 2013.
[52] G. I. Lemoine and M. Y. Ou, Finite volume modeling of poroelastic-fluid wave propagation with mapped grids, SIAM J. Sci. Comput., 36 (2014), pp, B396–B426. · Zbl 1299.76160
[53] R. J. LeVeque, Wave propagation algorithms for multidimensional hyperbolic systems, J. Comput. Phys., 131 (1997), pp. 327–353. · Zbl 0872.76075
[54] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. · Zbl 1010.65040
[55] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady State and Time Dependent Problems, SIAM, Philadelphia, 2007. · Zbl 1127.65080
[56] Y. Li, M. Chavko, J. L. Slack, B. Liu, R. M. McCarron, J. D. Ross, and J. J. Dalle Lucca, Protective effects of decay-accelerating factor on blast-induced neurotrauma in rats, Acta Neuropath. Comm., 1 (2013), 52.
[57] P. D. Maia and J. N. Kutz, Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury, J. Comput. Neurosci., 27 (2014), pp. 317–332.
[58] P. D. Maia and J. N. Kutz, Identifying critical regions for spike propagation in axon segments, J. Comput. Neurosci., 36 (2014), pp. 141–155.
[59] S. C. Matthews, I. A. Strigo, A. N. Simmons, R. M. O’Connell, L. E. Reinhardt, and S. A. Moseley, A multimodal imaging study in US veterans of operations Iraqi and enduring freedom with and without major depression after blast-related concussion, Neuroimage, 54 (2011), pp. S69–S75.
[60] M. A. Mayorga, The pathology of primary blast overpressure injury, Toxicology, 121 (1997), pp. 17–28.
[61] N. McDannold, N. Vykhodtseva, and K. Hynynen, Targeted disruption of the blood–brain barrier with focused ultrasound: Association with cavitation activity, Phys. Med. Biol., 51 (2006), pp. 793–807.
[62] N. McDannold, N. Vykhodtseva, and K. Hynynen, Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index, Ultrasound Med. Biol., 34 (2008), pp. 834–840.
[63] A. C. McKee, R. C. Cantu, C. J. Nowinski, E. T. Hedley-Whyte, B. E. Gavett, A. E. Budson, V. E. Santini, H.-S. Lee, C. A. Kubilus, and R. A. Stern, Blast injuries of the lung: Development, prognosis and possible therapy, Vojnosanit Pregl., 54 (1997), pp. 91–102.
[64] A. C. McKee, R. C. Cantu, C. J. Nowinski, E. T. Hedley-Whyte, B. E. Gavett, A. E. Budson, V. E. Santini, H.-S. Lee, C. A. Kubilus, and R. A. Stern, Chronic traumatic encephalopathy in athletes: Progressive tauopathy following repetitive head injury, J. Neuropath. Exp. Neurol., 68 (2009), pp. 709–735.
[65] A. C. McKee and M. E. Robinson, Military-related traumatic brain injury and neurodegeneration, Alzheimer’s & Dementia, 10 (2014), pp. S242–S253.
[66] D. F. Moore, A. Jérusalem, M. Nyein, L. Noels, M. S. Jaffee, and R. A. Radovitzky, Computational biology-modeling of primary blast effects on the central nervous system, Neuroimage, 47 (2009), pp. T10–T20.
[67] W. C. Moss, M. J. King, and E. G. Blackman, Skull flexure from blast waves: A mechanism for brain injury with implications for helmet design, Phys. Rev. Lett., 103 (2009), 108702.
[68] J. Murthy, J. Chopra, and D. Gulati, Subdural hematoma in an adult following a blast injury: Case report, J. Neurosurg., 50 (1979), pp. 260–261.
[69] R. Nakaoke, J. S. Ryerse, M. Niwa, and W. A. Banks, Human immunodeficiency virus type \(1\) transport across the in vitro mouse brain endothelial cell monolayer, Exp. Neurol., 193 (2005), pp. 101–109.
[70] T. Nitta, M. Hata, S. Gotoh, Y. Seo, H. Sasaki, N. Hashimoto, M. Furuse, and S. Tsukita, Size-selective loosening of the blood-brain barrier in claudin-\(5\)–deficient mice, J. Cell Biol., 161 (2003), pp. 653–660.
[71] M. K. Nyein, A. M. Jason, L. Yu, C. M. Pita, J. D. Joannopoulos, D. F. Moore, and R. A. Radovitzky, In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 20703–20708.
[72] C.-D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, Sonoporation from jetting cavitation bubbles, Biophys. J., 91 (2006), pp. 4285–4295.
[73] B. D. Owens, J. F. Kragh Jr., J. C. Wenke, J. Macaitis, C. E. Wade, and J. B. Holcomb, Combat wounds in operation Iraqi freedom and operation enduring freedom, J. Trauma Acute Care Surg., 64 (2008), pp. 295–299.
[74] M. B. Panzer, B. S. Myers, B. P. Capehart, and C. R. Bass, Development of a finite element model for blast brain injury and the effects of CSF cavitation, Ann. Biomed. Eng., 40 (2012), pp. 1530–1544.
[75] M. Pelanti and K.-M. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys., 259 (2014), pp. 331–357. · Zbl 1349.76851
[76] J. R. Perez-Polo, H. C. Rea, K. M. Johnson, M. A. Parsley, G. C. Unabia, G. Xu, S. K. Infante, D. S. DeWitt, and C. E. Hulsebosch, Inflammatory consequences in a rodent model of mild traumatic brain injury, J. Neurotrauma, 30 (2013), pp. 727–740.
[77] N. Perriere et al., Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties, J. Neurochem., 93 (2005), pp. 279–289.
[78] E. R. Peskind et al., Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in \(12\) Iraq war veterans with persistent post-concussive symptoms, Neuroimage, 54 (2011), pp. S76–S82.
[79] B. L. Plassman et al., Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias, Neurology, 55 (2000), pp. 1158–1166.
[80] A. Przekwas, M. Somayaji, and Z. Chen, A mathematical model coupling neuroexcitation, astrocyte swelling and perfusion in mild TBI, in International State-of-the-Science Meeting on Non-Impact, Blast-Induced Mild Traumatic Brain Injury, VA Herndon, 2009.
[81] R. D. Readnower, M. Chavko, S. Adeeb, M. D. Conroy, J. R. Pauly, R. M. McCarron, and P. G. Sullivan, Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury, J. Neurosci. Res., 88 (2010), pp. 3530–3539.
[82] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), pp. 357–372. · Zbl 0474.65066
[83] P. L. Roe, Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics, J. Comput. Phys., 63 (1986), pp. 458–476. · Zbl 0587.76126
[84] J. S. Ruan, T. B. Khalil, and A. I. King, Finite Element Modeling of Direct Head Impact, Technical report 933114, SAE Technical Paper, 1993.
[85] V. Rubovitch et al., A mouse model of blast-induced mild traumatic brain injury, Exp. Neurol., 232 (2011), pp. 280–289.
[86] R. Saurel and R. Abgrall, A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21 (1999), pp. 1115–1145. · Zbl 0957.76057
[87] R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431 (2001), pp. 239–271. · Zbl 1039.76069
[88] A. K. Shetty, V. Mishra, M. Kodali, and B. Hattiangady, Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves, Front. Cell. Neurosci., 8 (2014), 00232.
[89] D. I. Shreiber, A. C. Bain, and D. F. Meaney, In Vivo Thresholds for Mechanical Injury to the Blood-Brain Barrier, Technical report 973335, SAE Technical Paper, 1997.
[90] K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142 (1998), pp. 208–242. · Zbl 0934.76062
[91] A. Sundaramurthy, A. Alai, S. Ganpule, A. Holmberg, E. Plougonven, and N. Chandra, Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate computational blast injury model, J. Neurotrauma, 29 (2012), pp. 2352–2364.
[92] E. G. Takhounts, R. H. Eppinger, J. Q. Campbell, R. E. Tannous, E. D. Power, and L. S. Shook, On the development of the Simon finite element head model, Stapp Car Crash J., 47 (2003), pp. 107–133.
[93] E. G. Takhounts, S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma, Investigation of traumatic brain injuries using the next generation of simulated injury monitor (Simon) finite element head model, Stapp Car Crash J., 52 (2008), pp. 1–31.
[94] P. A. Taylor and C. C. Ford, Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury, J. Biomech. Eng., 131 (2009), 061007.
[95] H. Terrio, L. A. Brenner, B. J. Ivins, J. M. Cho, K. Helmick, K. Schwab, K. Scally, R. Bretthauer, and D. Warden, Traumatic brain injury screening: Preliminary findings in a US army brigade combat team, J. Head Trauma Rehabil., 24 (2009), pp. 14–23.
[96] S. Tokuda, T. Higashi, and M. Furuse, ZO-\(1\) knockout by Talen-mediated gene targeting in mdck cells: Involvement of ZO-\(1\) in the regulation of cytoskeleton and cell shape, PloS ONE, 9 (2014), e104994.
[97] O. Tomkins, A. Feintuch, M. Benifla, A. Cohen, A. Friedman, and I. Shelef, Blood-brain barrier breakdown following traumatic brain injury: A possible role in posttraumatic epilepsy, Cardiovas. Psych. Neurol., 2011 (2011), 765923.
[98] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Dordrecht, The Netherlands, 2008.
[99] E. F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4 (1994), pp. 25–34. · Zbl 0811.76053
[100] Y.-S. Tung, J. J. Choi, B. Baseri, and E. E. Konofagou, Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles, Ultrasound Med. Biol., 36 (2010), pp. 840–852.
[101] Y.-S. Tung, F. Vlachos, J. J. Choi, T. Deffieux, K. Selert, and E. E. Konofagou, In vivo transcranial cavitation threshold detection during ultrasound-induced blood–brain barrier opening in mice, Phys. Med. Biol., 55 (2010), pp. 6141–6155.
[102] W. Wakeland and B. Goldstein, A computer model of intracranial pressure dynamics during traumatic brain injury that explicitly models fluid flows and volumes, in Intracranial Pressure and Brain Monitoring XII, Springer, Wien, 2005, pp. 321–326.
[103] D. L. Warden, L. M. French, L. Shupenko, J. Fargus, G. Riedy, M. E. Erickson, M. S. Jaffee, and D. F. Moore, Case report of a soldier with primary blast brain injury, Neuroimage, 47 (2009), pp. T152–T153.
[104] B. E. Wojcik, C. R. Stein, K. Bagg, R. J. Humphrey, and J. Orosco, Traumatic brain injury hospitalizations of US army soldiers deployed to Afghanistan and Iraq, Amer. J. Prevent. Med., 38 (2010), pp. S108–S116.
[105] Y. Xiong, A. Mahmood, and M. Chopp, Animal models of traumatic brain injury, Nature Rev. Neurosci., 14 (2013), pp. 128–142.
[106] Z. Xu, J. B. Fowlkes, and C. A. Cain, A new strategy to enhance cavitational tissue erosion using a high-intensity, initiating sequence, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 53 (2006), pp. 1412–1424.
[107] S. Yeoh, E. D. Bell, and K. L. Monson, Distribution of blood–brain barrier disruption in primary blast injury, Ann. Biomed. Engrg., 41 (2013), pp. 2206–2214.
[108] C. Zhou, T. Khalil, and A. I. King, Viscoelastic response of the human brain to sagittal and lateral rotational acceleration by finite element analysis, in Proceedings of the International Research Council on the Biomechanics of Impact Conference, Vol. 24, International Research Council on Biomechanics of Impact, Bonn, 1997, pp. 35–48.
[109] M. Ziejewski, G. Karami, and A. Akhatov, Selected biomechanical issues of brain injury caused by blasts, Brain Inj. Prof, 4 (2007), pp. 10–15.
[110] B. V. Zlokovic, Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders, Nature Rev. Neurosci., 12 (2011), pp. 723–738.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.