×

\(L^ 2\)-cohomology of locally symmetric varieties. (English) Zbl 0658.14010

Let G be a connected semisimple algebraic group defined over \({\mathbb{Q}}\) and \(G({\mathbb{R}})\) the associated real group. Assume that \(G({\mathbb{R}})\) is hermitean, i.e. \(D=G({\mathbb{R}})/K({\mathbb{R}})\) carries the structure of a complex manifold with an invariant hermitean metric, where \(K({\mathbb{R}})\) is a maximal compact subgroup of \(G({\mathbb{R}})\). If \(\Gamma\) is an arithmetic subgroup of G(\({\mathbb{Q}})\) let \(X^ 0=\Gamma \setminus D\) and X the Satake-Baily-Borel compactification of \(X^ 0\). The space X is a projective variety with singularities. Let \({\mathcal L}_ X\) be the sheaf of locally square integrable forms (with locally square integrable exterior derivative) defined on the regular set \(X_{reg}\) of \(X^ 0\). Then \({\mathcal L}_ X\) is a complex and defines the \(L^ 2\)-cohomology of X.
The main result of this paper is a proof of Zucker’s conjecture that the \(L^ 2\)-cohomology of X agrees with the intersection cohomology of X, a cohomology theory coming from a subcomplex of the ordinary chain complex, defined via a piecewise linear structure on X. The theorem holds for local coefficients defined by a finite dimensional representation of G. The space X has a stratification and the proof of the main theorem proceeds through various reductions and an induction on the codimension of the strata.
Reviewer: J.Hilgert

MSC:

14F99 (Co)homology theory in algebraic geometry
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology
14M17 Homogeneous spaces and generalizations
22E15 General properties and structure of real Lie groups
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] A. Ash , D. Mumford , M. Rapoport and Y. Tai , Smooth Compactifications of Locally Symmetric Varieties . Brookline: Math. Sci. Press (1975). · Zbl 0334.14007
[2] A. Beilinson , J. Bernstein and P. Deligne , Faisceaux Pervers, in Analyse et Topologie sur les espaces singuliers , Astérisque 100 (1982). · Zbl 0536.14011
[3] W. Baily and A. Borel , Compactification of arithmetic quotients of bounded symmetric domains . Ann. of Math. 84 (1966) 442-528. · Zbl 0154.08602 · doi:10.2307/1970457
[4] A. Borel , Introduction aux Groupes Arithmétiques . Paris: Hermann (1969). · Zbl 0186.33202
[5] A. Borel , L2-cohomology and intersection cohomology of certain arithmetic varieties, in Emmy Noether at Bryn Mawr , 119-131. Berlin- Heidelberg-New York: Springer-Verlag (1983). · Zbl 0541.14015
[6] A. Borel , Regularization theorems in Lie Algebra cohomology. Applications . Duke Math. J. 50 (1983) 605-623. · Zbl 0528.22010 · doi:10.1215/S0012-7094-83-05028-7
[7] A. Borel and W. Casselman , L2-Cohomology of locally symmetric manifolds of finite volume . Duke Math. J. 50 (1983). 625-647. · Zbl 0528.22012 · doi:10.1215/S0012-7094-83-05029-9
[8] A. Borel and W. Casselman , Cohomologie d’intersection et L 2-cohomologie de variétés arithmétiques de rang rationnel 2 , C.R. Acad. Sc. Paris, 301, Serie I, n^\circ 7 (1985) 369-373. · Zbl 0612.14018
[9] J.-L. Brylinski and J.-P. Labesse , Cohomologie d’intersection et fonctions L de certaines variétés de Shimura . Ann. Sc. de l’Éc. Norm. Sup. 17, 4e Série (1983) 361-412. · Zbl 0553.12005 · doi:10.24033/asens.1476
[10] A. Borel and J.-P. Serre , Corners and arithmetic groups . Comm. Math. Helv.48 (1973) 436-491. · Zbl 0274.22011 · doi:10.1007/BF02566134
[11] W. Casselman , Introduction to the L2-Cohomology of Arithmetic Quotients of Bounded Symmetric Domains . Complex Analytic Singularities, Advanced Studies in Pure Mathematics 8 (1986) 69-93. · Zbl 0669.22004
[12] E. Cattani , A. Kaplan and W. Schmid , L2 and intersection cohomologies for a polarization variation of Hodge structure . Invent. Math. 87 (1987) 217-252. · Zbl 0611.14006 · doi:10.1007/BF01389415
[13] W.T. Van Est , A generalization of the Cartan-Leray spectral sequence, I, II . Indag. Math. XX (1958) 399-413. · Zbl 0084.39202
[14] M. Gaffney , A special Stoke’s theorem for complete Riemannian manifolds . Ann. of Math. 60 (1954) 140-145. · Zbl 0055.40301 · doi:10.2307/1969703
[15] M. Kashiwara and T. Kawai , The Poincaré lemma for variations of Hodge structure . Preprint RIMS-540, Kyoto (May 1986). · Zbl 0629.14005 · doi:10.2977/prims/1195176545
[16] E. Looijenga , L2-Cohomology of locally symmetric varieties. Announcement , Columbia University, New York (Febr. 1987).
[17] M. Saito , Modules de Hodge polarisables . Preprint RIMS-553, Kyoto (October 1987). · Zbl 0691.14007 · doi:10.2977/prims/1195173930
[18] M. Saito , Mixed Hodge Modules . Proc. Japan Acad. 62, Ser. A (1986) 360-363. · Zbl 0635.14008 · doi:10.3792/pjaa.62.360
[19] M. Saito , On the Derived Category of Mixed Modules . Proc. Japan Acad. 62, Ser. A (1986) 364-366. · Zbl 0635.14009 · doi:10.3792/pjaa.62.364
[20] M. Saito , Mixed Hodge Modules . Preprint RIMS-585, July 1987. · Zbl 0727.14004 · doi:10.2977/prims/1195171082
[21] L. Saper and M. Stern , L2-Cohomology of Arithmetic Varieties . Preprint Duke University, Durham (Febr. 1987). · Zbl 0653.14010 · doi:10.1073/pnas.84.16.5516
[22] S. Zucker , Hodge theory with degenerating coefficients: L2 cohomology in the Poincaré metric . Ann. of Math. 109 (1981) 415-476. · Zbl 0446.14002 · doi:10.2307/1971221
[23] S. Zucker , L2 Cohomology of Warped Products and Arithmetic Groups . Invent. Math. 70 (1982) 169-218. · Zbl 0508.20020 · doi:10.1007/BF01390727
[24] Z4 S. Zucker , L2-Cohomology and Intersection Homology of Locally Symmetric Varieties, II . Comp. Math. 59 (1986) 339-398. · Zbl 0624.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.