zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A q-analog of the Gauss summation theorem for hypergeometric series in U(n). (English) Zbl 0658.33005
A q-analog of Holman’s U(n) generalization of the Gauss summation theorem for hypergeometric series is derived. This result is obtained by iterating the author’s generalization of the Gauss reduction formula for basic hypergeometric series in U(n). Multiple series generalizations of both q-analogs of the Chu-Vandermonde summation theorem occur as special cases. Letting $q\to 1$ the corresponding results for ordinary hypergeometric series in U(n) are obtained. U(n) generalizations the beta integral and Euler’s integral representation of a ${}\sb 2F\sb 1$ hypergeometric series are also given. Finally, some q-analogs of partial fractions expansions are discussed.
Reviewer: R.A.Gustafson

MSC:
33C80Connections of hypergeometric functions with groups and algebras
33C05Classical hypergeometric functions, ${}_2F_1$
33B15Gamma, beta and polygamma functions
WorldCat.org
Full Text: DOI
References:
[1] Andrews, G. E.: Applications of basic hypergeometric functions. SIAM rev. 16, 441-484 (1974) · Zbl 0299.33004
[2] Andrews, G. E.: Problems and prospects for basic hypergeometric functions. Theory and application of special functions, 191-224 (1975)
[3] Andrews, G. E.: G.-crotaencyclopedia of mathematics and its applications. The theory of partitions 2 (1976)
[4] Andrews, G. E.: Q-series: their development and applications in analysis, number theory, combinatorics, physics and computer algebra. NSF-CBMS regional conference series (1986)
[5] Andrews, G. E.; Askey, R.: Enumeration of partitions: the role of Eulerian series and q-orthogonal polynomials. Higher combinatorics (1977) · Zbl 0381.10008
[6] Appéll, P.; Fériet, J. Kampéde: Fonctions hypergéometriques et hypersphériques: polynomes d’hermites. (1926)
[7] Askey, R.: The q-gamma and q-beta functions. Appl. anal. 8, 125-141 (1978) · Zbl 0398.33001
[8] Askey, R.: Book review. Zentralblatt für Mathematik (Mathematics abstracts) 514, 161-163 (1984)
[9] R. Askey, private communication, April 1985.
[10] Bailey, W. N.: Generalized hypergeometric series. Cambridge mathematical tract no. 32 (1935) · Zbl 0011.02303
[11] Dyson, F. J.: Missed opportunities. Bull. amer. Math. soc. 78, 635-653 (1972) · Zbl 0271.01005
[12] H. Flanders, private communication, October 1985.
[13] Greub, W.: Linear algebra. (1975) · Zbl 0317.15002
[14] Gustafson, R. A.: A whipple’s transformation for hypergeometric series in $U(n)$ and multivariate hypergeometric orthogonal polynomials. SIAM J. Math. anal. 18, 495-530 (1987) · Zbl 0607.33015
[15] Gustafson, R. A.; Milne, S. C.: Schur functions, good’s identity, and hypergeometric series well poised in $SU(n)$. Adv. in math. 48, 177-188 (1983) · Zbl 0516.33015
[16] Gustafson, R. A.; Milne, S. C.: A q-analog of transposition symmetry for invariant G-functions. J. math. Anal. appl. 114, 210-240 (1986) · Zbl 0587.33010
[17] Hahn, W.: Beitrage zur theorie der heinesehen reihen, die 24 integrale der hypergeometrischen q-differenzengleichung das q-analogen der Laplace transformation. Math. nachr. 2, 263-278 (1949) · Zbl 0033.05703
[18] Hahn, W.: Über die hoheren heineschen rechen und eine einheitliche theorie der sogennanten speziellen funktionen. Math. nachr. 3, 257-294 (1950) · Zbl 0038.05002
[19] Heine, E.: Untersuchungen über die reihe$\dots $. J. reine angew. Math. 34, 285-328 (1847) · Zbl 034.0971cj
[20] Iii, W. J. Holman: Summation theorems for hypergeometric series in $U(n)$. SIAM J. Math. anal. 2, 523-532 (1980) · Zbl 0454.33010
[21] Iii, W. J. Holman; Biedenharn, L. C.; Louck, J. D.: On hypergeometric series well-poised in $SU(n)$. SIAM J. Math. anal. 7, 529-541 (1976) · Zbl 0329.33013
[22] Horn, J.: Über die convergenz der hypergeometrische reihen zweier und dreier veränderlichen. Math. ann. 34, 544-600 (1889)
[23] Ismail, M. E. H: A simple proof of Ramanujan’s $1{\Psi}1$ sum. Proc. amer. Math. soc. 63, 185-186 (1977) · Zbl 0351.33002
[24] Jackson, F. H.: On basic double hypergeometric functions. Quart. J. Math. Oxford 13, 69-82 (1942) · Zbl 0060.19809
[25] Jackson, F. H.: Basic double hypergeometric functions (II). Quart. J. Math. Oxford 15, 49-61 (1944) · Zbl 0060.19810
[26] Kac, V. G.: Infinite dimensional Lie algebras. Progress in mathematics 44 (1983) · Zbl 0537.17001
[27] K. Leeb, private communication, May 1985.
[28] Lepowsky, J.; Milne, S.: Lie algebraic approaches to classical partition identities. Adv. in math. 29, 15-59 (1978) · Zbl 0384.10008
[29] Louck, J. D.: Theory of angular momentum in N-dimensional space. Los alamos scientific laboratory report LA-2451 (1960)
[30] Louck, J. D.; Biedenharn, L. C.: Canonical unit adjoint tensor operators in $U(n)$. J. math. Phys. 11, 2368-2414 (1970) · Zbl 0196.14501
[31] Macdonald, I. G.: Affine root systems and Dedekind’s n-function. Invent. math. 15, 91-143 (1972) · Zbl 0244.17005
[32] Macdonald, I. G.: Symmetric functions and Hall polynomials. (1979) · Zbl 0487.20007
[33] I. G. Macdonald, private communication, October 1985.
[34] Mathai, A. M.; Saxena, R. K.: Generalized hypergeometric functions with applications in statistics and physical sciences. Lecture notes in mathematics 348 (1973) · Zbl 0272.33001
[35] Jr., W. Miller: Lie theory and q-difference equations. SIAM J. Math. anal. 1, No. 2, 171-178 (1970)
[36] Milne, S. C.: Hypergeometric series well-poised in $SU(n)$ and a generalization of biedenharn’s G functions. Adv. in math. 36, 169-211 (1980) · Zbl 0451.33010
[37] Milne, S. C.: A new symmetry related to $SU(n)$ for classical basic hypergeometric series. Adv. in math. 57, 71-90 (1985) · Zbl 0586.33012
[38] Milne, S. C.: A q-analog of hypergeometric series well-poised in $SU(n)$ and invariant G-functions. Adv. in math. 58, 1-60 (1985) · Zbl 0586.33014
[39] Milne, S. C.: A q-analog of the $5F4(1)$ summation theorem for hypergeometric series well-poised in $SU(n)$. Adv. in math. 57, 14-33 (1985) · Zbl 0586.33010
[40] Milne, S. C.: An elementary proof of the macdonald identities for $A(1)$l. Adv. in math. 57, 34-70 (1985) · Zbl 0586.33011
[41] Milne, S. C.: A $U(n)$ generalization of Ramanujan’s $1{\Psi}1$ summation. J. math. Anal. appl. 118, 263-277 (1986) · Zbl 0594.33008
[42] Milne, S. C.: Basic hypergeometric series very well poised in $U(n)$. J. math. Anal. appl. 122, 223-256 (1987) · Zbl 0607.33014
[43] Rainville, E. D.: Special function. (1960) · Zbl 0092.06503
[44] Slater, L. J.: Generalized hypergeometric functions. (1966) · Zbl 0135.28101
[45] V. Strehl, private communication, June 1985.
[46] Whipple, F. J. W: On well-poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum. Proc. London math. Soc. 24, No. 2, 247-263 (1926) · Zbl 51.0283.03
[47] Whipple, F. J. W: Well-poised series and other generalized hypergeometric series. Proc. London math. Soc. 25, No. 2, 525-544 (1926) · Zbl 52.0365.03
[48] Whittaker, E. T.; Watson, G. N.: Modern analysis. (1927) · Zbl 53.0180.04
[49] J. Wimp, private communication, May 1985.
[50] Winquist, L.: An elementary proof of $p(11m + 6) \equiv 0$(mod 11). J. combin. Theory 6, 56-59 (1969) · Zbl 0241.05006