zbMATH — the first resource for mathematics

A new method for the thermodynamics of the BCS model. (English) Zbl 0658.60141
The authors analyze a simplified version of the B.C.S. - model to understand phase transitions. Although Bogolyubov and his school have developed perturbative methods to analyze the full B.C.S.-model, these are rigorously valid only in the limiting case of zero temperature. The authors deal with a quasi-spin model, with variable energy and coupling terms.
The method used is based on the recent applications of Varadhan’s large deviation principle to quasi-spin systems by W. Cegla, J. T. Lewis and G. A. Raggio [Commun. Math. Phys. 118, No.2, 337-354 (1988)] and the Berzin-Lieb estimates for the free energy. The technique consists in introducing a large number of subsystems and approximating the subsystem hamiltonian by a total spin hamiltonian. This approximation is shown to converge when the number of subsystems goes to infinity. This limit and the thermodynamic limit are shown to commute.
The variational principle arising from the application of the large deviation principle is shown to yield the gap equation. The existence of bifurcation at a critical parameter value is demonstrated. It is shown that the order parameter does not vanish below this critical temperature.
Reviewer: Y.Prahalad

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B10 Quantum equilibrium statistical mechanics (general)
Full Text: DOI
[1] Bogoliubov, N.N., Jr.: A method for studying model Hamiltonians. International Series of Monographs in Natural Philosophy, Vol 4. Oxford: Pergamon 1972
[2] Duffield, N.G., Pulé, J.V.: Lett. Math. Phys.14, 329 (1987) · Zbl 0637.58040 · doi:10.1007/BF00402142
[3] Duffield, N.G., Pulé, J.V.: Thermodynamics and phase transitions in the Overhauser model. J. Stat. Phys. (to appear) · Zbl 0658.60141
[4] Raggio, G.A.: The free energy of the full spin-Boson model. Preprint, Dublin Institute for Advanced Studies (1988) · Zbl 1084.82507
[5] Thirring, W.: Commun. Math. Phys.7, 181 (1967) · doi:10.1007/BF01645661
[6] Thouless, D.J.: Phys. Rev.117, 1256 (1960) · doi:10.1103/PhysRev.117.1256
[7] Cegla, W., Lewis, J.T., Raggio, G.A.: The free energy of quantum spin systems and large deviations. Commun. Math. Phys. (to appear)
[8] Varadhan, S.R.S.: Commun. Pure Appl. Math.19, 261 (1966) · Zbl 0147.15503 · doi:10.1002/cpa.3160190303
[9] Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Berlin Heidelberg New York: Springer 1985 · Zbl 0566.60097
[10] Simon, B.: Commun. Math. Phys.71, 247 (1980) · Zbl 0436.22012 · doi:10.1007/BF01197294
[11] Berezin, F.A.: Math. U.S.S.R. Izv.6, 117 (1972)
[12] Lieb, E.H.: Commun. Math. Phys.31, 327 (1973) · Zbl 1125.82305 · doi:10.1007/BF01646493
[13] Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev.108, 1175 (1957) · Zbl 0090.45401 · doi:10.1103/PhysRev.108.1175
[14] Anderson, P.W.: Phys. Rev.112, 1900 (1958) · doi:10.1103/PhysRev.112.1900
[15] Thouless, D.J.: The quantum mechanics of many-body systems. New York: Academic Press 1961 · Zbl 0103.23502
[16] Haag, R.: Il Nuovo Cimento25, 287 (1962) · Zbl 0113.46210 · doi:10.1007/BF02731446
[17] Van Hemmen, L.: Fortschr. Physik26, 397 (1978) · doi:10.1002/prop.19780260702
[18] Ginibre, J.: Commun. Math. Phys.8, 26 (1968) · Zbl 0155.32701 · doi:10.1007/BF01646422
[19] Jentzsch, R.: Crelles J.141, 235 (1912) · JFM 43.0429.01 · doi:10.1515/crll.1912.141.235
[20] Petz, D.: Proc. Am. Math. Soc.99, 273 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.