×

zbMATH — the first resource for mathematics

A review of hyper-heuristics for educational timetabling. (English) Zbl 1336.90080
Summary: Educational timetabling problems, namely, university examination timetabling, university course timetabling and school timetabling, are combinatorial optimization problems requiring the allocation of resources so as to satisfy a specified set of constraints. Hyper-heuristics have been successfully applied to a variety of combinatorial optimization problems. This is a rapidly growing field which aims at providing generalized solutions to combinatorial optimization problems by exploring a heuristic space instead of a solution space. From the research conducted thus far it is evident that hyper-heuristics are effective at solving educational timetabling problems and have the potential of advancing this field by providing a generalized solution to educational timetabling as a whole. Given this, the paper provides an overview and critical analysis of hyper-heuristics for educational timetabling and proposes future research directions, focusing on using hyper-heuristics to provide a generalized solution to educational timetabling.

MSC:
90C27 Combinatorial optimization
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdul-Rahman, S., Bargiela, A., Burke, E. K., Ozcan, E., McCollum, B., & McMullan, P. (2014). Adaptive linear combination heuristic orderings in constructing examination timetables. European Journal of Operational Research, 232(2), 287-297. · Zbl 1305.90409
[2] Anwar, K., Khader, A. T., Al-Betar, M. A. & Awadallah, M. A. (2013). Harmony search-based hyper-heuristic for examination timetabling. In Proceedings of the IEEE 9th international colloquium on signal processing and its application, 8-10 March, Kuala Lumpur (pp. 176-181).
[3] Asmuni, H., Burke, E. K. & Garibaldi, J. M. (2005). Fuzzy multiple ordering criteria for examination timetabling. In E. K. Burke, & M. Trick (Eds.), Selected papers from the 5th international conference on the theory and practice of automated timetabling (PATAT 2004)—the theory and practice of automated timetabling V, lecture notes in computer science (Vol. 3616, pp. 147-160).
[4] Asmuni, H., Burke, E. K., Garibaldi, J. M. & McCollum, B. (2007). Determining rules in fuzzy multiple heuristic orderings for constructing examination timetables. In P. Bapiste, A. Munier, G. Kendall & F. Sourd (Eds.), Proceedings of the 3rd multidisciplinary international scheduling: Theory and applications conference, MISTA 2007 (pp. 59-66).
[5] Asmuni, H; Burke, EK; Garibaldi, JM; McCollum, B; Parkes, AJ, An investigation of fuzzy multiple heuristic orderings in the construction of university examination timetables, Computers and Operations Research, 36, 981-1001, (2009) · Zbl 1162.90440
[6] Bader-El-Ben, M; Poli, R; Fatima, S, Evolving timetabling heuristics using grammar-based genetic programming hyper-heuristic framework, Memetic Computing, 1, 205-219, (2009)
[7] Bai, R., Blazewicz, J., Burke, E. K., Kendall, G. & McCollum, B. (2007a). A simulated annealing hyper-heuristic methodology for flexible decision support (Technical Report No. NOTTCS-TR-2007-8). School of Computer Science and Information Technology, University of Nottingham, Nottingham. · Zbl 1241.90077
[8] Bai, R., Burke, E. K., Gendreau, M., Kendall, G. & McCollum, B. (2007b). Memory length hyper-heuristics: An empirical study. In Proceedings of the 2007 IEEE symposium on computational intelligence in scheduling, CI-Sched 2007 (pp. 173-178).
[9] Bilgin, B., Ozcan, E. & Korkmaz, E. E. (2006). An experimental study on hyper-heuristics and exam timetabling. In E. K. Burke, & H. Rudova (Eds.), Proceedings of the international conference on the practice and theory of automated timetabling, PATAT 2006 (pp. 123-140).
[10] Burke, E. K. & Pais, T. C. (2011). Using differential evolution to identify fuzzy measures for the exam timetabling problem. In Proceedings of the multidisciplinary international conference on scheduling: Theory and applications, MISTA 2011 (pp. 335-351).
[11] Burke, E. K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S. & Vazquez-Rodriguez, J. A. (2009a). HyFlex: A flexible framework for the design and analysis of hyper-heuristics. In Proceedings of the multidisciplinary international scheduling conference (MISTA ’09) (pp. 790-797).
[12] Burke, E. K., Dror, M., Petrovic, S. & Qu, R. (2005). Hybrid graph heuristics with a hyper-heuristic approach to exam timetabling problems. In: B. Golden, S. Raghavan & E. A. Wasil (Eds.), The next wave in computing, optimization, and decision technologies-conference volume of the 9th informs computing society conference (pp. 79-91). · Zbl 1163.90775
[13] Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., & Schulenburg, S. (2003a). Hyper-heuristics: An emerging direction in modern research. In Handbook of metaheuristics, chapter 16 (pp. 457-474). · Zbl 1102.90377
[14] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Woodard, J. (2010a). A classification of hyper-heuristic approaches. In Handbook of metaheuristics, international series in operations research and management science (Vol. 146, pp. 449-468). · Zbl 1056.90141
[15] Burke, E. K., Kendall, G., Misir, M. & Ozcan, E. (2008). A study of simulated annealing hyper-heuristics. In Proceedings of the international conference on the practice and theory of automated timetabling (PATAT 2008), http://www.asap.cs.nott.ac.uk/patat/patat08/Papers/Ozcan-HD3a.pdf. Accessed 12 February 2012. · Zbl 0773.65042
[16] Burke, E. K., Kendall, G., Misir, M., & Ozcan, E. (2010b). Monte Carlo hyper-heuristics for examination timetabling. Annals of Operations Research. doi:10.1007/s10479-010-0782-2. · Zbl 1251.90394
[17] Burke, E. K., Landa Silva, J. D., Silva, A. & Soubeiga, E. (2003b). Multi-objective hyper-heuristic approaches for space allocation and timetabling. In Meta-heuristics: Progress as real problem solvers, chapter 1 (pp. 1-31).
[18] Burke, E. K., MacCarthy, B. L., Petrovic, S. & Qu, R. (2002a). Knowledge discovery in a hyper-heuristic for course timetabling using case-based reasoning. In Proceedings of the international conference on the practice and theory of automated timetabling (PATAT 2002) (pp. 90-103). · Zbl 0987.68880
[19] Burke, E. K., Petrovic, S. & Qu, R. (2002b). Case based heuristic selection for examination timetabling. In Proceedings of SEAL ’02 (pp. 277-281).
[20] Burke, E. K., Qu, R. & Soghier, A. (2009c). Adaptive selection of heuristics within a GRASP for exam timetabling. In Proceedings of the multidisciplinary conference on scheduling: Theory and application, MISTA 2009 (pp. 409-423).
[21] Burke, E. K., Qu, R. & Soghier, A. (2010c). Adaptive selection of heuristics for improving constructed exam timetables. In Proceedings of the 8th international conference on the practice and theory of automated timetabling, PATAT 2010 (pp. 136-151). · Zbl 1301.90031
[22] Burke, E. K., Qu, R. & Soghier, A. (2011). An adaptive tie breaking and hybridisation hyper-heuristic for exam timetabling problems. In Proceedings of the nature inspired cooperative strategies for optimization (NICSO2011) (pp. 205-213).
[23] Burke, E. K., Qu, R., & Soghier, A. (2012). Adaptive selection of heuristics for improving examination timetables. Annals of Operations Research. doi:10.1007/s10479-012-1140-3. · Zbl 1301.90031
[24] Burke, EK; Newell, JP, Solving examination timetabling problems through adaption of heuristic ordering, Annals of Operations Research, 129, 107-134, (2004) · Zbl 1056.90141
[25] Burke, EK; Petrovic, S; Qu, R, Cased-based heuristic selection for timetabling problems, Journal of Scheduling, 9, 115-132, (2006) · Zbl 1154.90423
[26] Burke, EK; McCollum, B; Meisels, A; Petrovic, S; Qu, R, A graph-based hyper-heuristic for educational timetabling problems, European Journal of Operational Research, 176, 177-192, (2007) · Zbl 1137.90602
[27] Burke, EK; Hyde, M; Kendall, G; Ochoa, G; Ozcan, E; Woodard, J, Exploring hyper-heuristic methodologies with genetic programming, Computational Intelligence, 6, 177-201, (2009) · Zbl 1184.68207
[28] Burke, EK; Gendreau, M; Hyde, M; Kendall, G; Ochoa, G; Ozcan, E; etal., Hyper-heuristics: A survey of the state of the art, Journal of the Operational Research Society, 64, 1695-1724, (2013)
[29] Caflisch, RE, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7, 1-49, (1998) · Zbl 0949.65003
[30] Dueck, G, New optimization heuristics the great deluge algorithm and the record-to-record travel, Journal of Computational Physics, 104, 86-92, (1993) · Zbl 0773.65042
[31] Ersoy, E., Ozcan, E. & Uyar, S. (2007). Memetic algorithms and hillclimbers. In Baptiste, P., Kendall, G., Kordon, A. M. & Sourd, F. (Eds.), Proceedings of the 3rd multidisciplinary international conference on scheduling: Theory and applications conference, MISTA 2007 (pp. 159-166).
[32] Festa, P., & Resende, M. G. C. (2002). GRASP: An annotated bibliography. In Glover, F. & Kochenberger, G. (Eds.), Essays and surveys in metaheuristics (Vol. 15, pp. 325-367). · Zbl 1017.90001
[33] Geem, Z. W. (2009). Music-inspired harmony search algorithm theory and applications. Berlin: Springer.
[34] Glover, F., & Laguna, M. (1997). Tabu search. Dordrecht: Kluwer. · Zbl 0930.90083
[35] Goldberg, David. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley Professional. · Zbl 0721.68056
[36] Hansen, P., & Mladenovic, N. (2003). Variable neighborhood search. In Glover, F. & Kochenberger, G. (Eds.), Handbook of metaheuristics (pp. 145-184). · Zbl 1102.90371
[37] Kalendar, M., Kheiri, A., Ozcan, E. & Burke, E. K. (2012). A gradient-simulated annealing hyper-heuristic for a curriculum-based course timetabling problem. In Proceedings of the 12th UK workshop on computational intelligence (UKCI), 5-7 September 2012 (pp. 1-8).
[38] Kalender, M; Kheiri, A; Ozcan, E; Burke, EK, A greedy gradient-simulated annealing selection hyper-heuristic, Soft Computing, 17, 2279-2292, (2013)
[39] Kendall, G. & Hussin, M. H. (2004). Tabu search hyper-heuristic approach to the examination timetabling problem at university technology MARA. In Proceedings of the international conference on the practice and theory of automated timetabling, PATAT 2004 (pp. 270-295).
[40] Kendall, G. & Hussin, N. M. (2005). An investigation of a Tabu search based on hyper-heuristics for examination timetabling. In G. Kendall, E. K. Burke & S. Petrovic (Eds.), Proceedings of the 2nd multidisciplinary scheduling: Theory and applications conference, MISTA 2005 (pp. 309-328).
[41] Kendall, G., Soubeiga, E. & Cowling, P. (2002). Choice function and hyper-heuristics. In Proceedings of the fourth Asia-Pacific conference on simulated evolution and learning, SEAL (pp. 667-671).
[42] Kheiri, A., Ozcan, E. & Parkes, A. (2012). HySST: Hyper-heuristic search strategies and timetabling. In Proceedings of the 9th international conference on the practice and theory of automated timetabling (PATAT ’12), August 2012 (pp. 497-499). · Zbl 1243.90007
[43] Kheiri, A., Ozcan, E. & Parkes, A. J. (2014). A stochastic local search algorithm with adaptive acceptance for high-school timetabling. Annals of Operations Research. doi:10.1007/s10479-014-1660-0. · Zbl 1336.90075
[44] Kolodner, J. (1993). Case-based reasoning. San Mateo: Morgan Kaufmann. · Zbl 0811.68055
[45] Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Information Sciences. doi:10.1016/j.ins.2014.02.155.
[46] Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press. · Zbl 0850.68161
[47] Lourenco, HR; Martin, O; Stutzle, T, Iterated local search, Handbook of Metaheuristics, 57, 321-353, (2003) · Zbl 1116.90412
[48] Maashi, M; Ozcan, E; Kendall, G, A multi-objective hyper-heuristic based on choice function, Expert Systems with Applications, 41, 4475-4493, (2014)
[49] McCollum, B; McMullan, P; Paechter, B; Lewis, R; Schaerf, A; DiGapsero, L; etal., Setting the research agenda in automated timetabling: the second international timetabling competition, INFORMS Journal of Computing, 22, 120-130, (2008) · Zbl 1243.90007
[50] McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., & O’Neill, M. (2010). Grammar-based genetic programming: A survey. Genetic Programming and Evolvable Hardware, 11(3-4), 365-396. · Zbl 1184.68207
[51] Misir, M; Verbeeck, K; Causmaecker, P; Vanden Berghe, G, An investigation on the generality level of selection hyper-heuristics under different empirical conditions, Applied Soft Computing, 13, 3335-3353, (2013)
[52] Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms. In Handbook of metaheuristics, international series in operations research & management science (Vol. 57, pp. 105-144). · Zbl 1107.90459
[53] Murofushi, T; Sugeno, M, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems, 29, 201-227, (1989) · Zbl 0662.28015
[54] O’ Neill, M., & Ryan, C. (2003). Grammatical evolution: Evolutionary automatic programming in an arbitrary language. Dordrecht: Kluwer.
[55] Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J., Gendreau, M., Kendall, G., McCollum, B., Parkes, A. J., Petrovic, S. & Burke, E. K. (2012). HyFlex: A benchmark framework for cross-domain heuristic search. In Proceedings of the European conference on evolutionary computation in combinatorial optimization (EvoCOP 2012), lecture notes in computer science (Vol. 7245, pp. 136-147). · Zbl 1292.90337
[56] Ochoa, G., Qu, R., & Burke, E. K. (2009). Analyzing the landscape of graph based hyper-heuristics for timetabling problems. In Proceedings of the 11th annual conference on genetic and evolutionary computation (GECCO ’09) (pp. 341-348).
[57] Ozcan, E., Bykov, Y., Birben, M. & Burke, E. K. (2009). Examination timetabling using late acceptance hyper-heuristics. In Proceedings of the IEEE congress on evolutionary computing, CEC ’09 (pp. 997-1004).
[58] Ozcan, E., Misir, M., Ochoa, G. & Burke, E. K. (2012). A reinforcement learning-great-deluge hyper-heuristic for examination timetabling. Modeling, Analysis, and Applications in Metaheuristic Computing, \(1\)(1), 34-55.
[59] Paechter, B., Gambardella, L. M., & Rossi-Doria, O. (2003). International timetabling competition, http://www.idsia.ch/Files/ttcomp2002/oldindex.html. Accessed 1 July 2012.
[60] Pais, T. C. & Burke, E. K. (2010). Choquet integral for combining heuristic values for exam timetabling problem. In Proceedings of the 8th international conference on the practice and theory of automated timetabling, PATAT 2010 (pp. 305-320). · Zbl 1196.90071
[61] Pappa, GL; Ochoa, G; Hyde, MR; Freitas, AA; Woodward, J; Swan, J, Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms, Genetic Programming and Evolvable Machines, 15, 3-35, (2014)
[62] Pillay, N. (2008). An analysis of representations for hyper-heuristics for the uncapacitated examination timetabling problem in a genetic programming system. In C. Cilliers, L. Barnard, & R. Botha (Eds.), Proceedings of SAICSIT 2008 (pp. 188-192). · Zbl 1279.90071
[63] Pillay, N. (2009). Evolving hyper-heuristics for the uncapacitated examination timetabling problem. In Proceedings of the multidisciplinary international conference on scheduling: Theory and applications (MISTA 2009) (pp. 409-422).
[64] Pillay, N. (2010a). An overview of school timetabling research. In Proceedings of the 8th international conference on the practice and theory of automated timetabling, PATAT ’10 (pp. 321-335).
[65] Pillay, N. (2010b). Evolving hyper-heuristics for a highly constrained examination timetabling problem. In Proceedings of the 8th international conference on the practice and theory of automated timetabling, PATAT 2010 (pp. 336-346).
[66] Pillay, N. (2010c). A study into the use of hyper-heuristics to solve the school timetabling problem. In Proceedings of SAICSIT 2010 (pp. 258-264).
[67] Pillay, N. (2011a). A hyper-heuristic approach to solving school timetabling problems. In Proceedings of the multidisciplinary international conference on scheduling: Theory and applications, MISTA 2011 (pp. 628-632).
[68] Pillay, N. (2011b). Evolving heuristics for the school timetabling problem. In Proceedings of the 2011 IEEE conference on intelligent computing and intelligent systems (ICIS011) (Vol. 3, pp. 281-286).
[69] Pillay, N. (2013a). A comparative study of hyper-heuristics for solving the school timetabling problem. In Proceedings of SAICSIT 2013, 7-10 October 2013, East London (pp. 278-285).
[70] Pillay, N. (2013b). A study of hyper-heuristics for hybridizing search. In Advances in artificial intelligence-proceedings of ALEA 2013, 9-12 September, Portugal (pp. 128-139). · Zbl 1279.90071
[71] Pillay, N; Banzhaf, W, A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem, European Journal of Operational Research, 197, 482-491, (2009) · Zbl 1159.90528
[72] Pillay, N, Evolving hyper-heuristics for the uncapacitated examination timetabling problem, Journal of the Operational Research Society, 63, 47-58, (2012)
[73] Post, G. (2011a). Third international timetabling competition (ITC 2011), http://www.utwente.nl/ctit/itc2011/. Accessed 1 July 2012.
[74] Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B. & Schaerf, A. (2013). The third international timetabling competition. Annals of Operations Research. doi:10.1007/s10479-013-1340-5. · Zbl 1336.90081
[75] Post, G., Kingston, J. H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., et al. (2011b). XHSTT: An XML archive for high school timetabling problems in different countries. Annals of Operations Research,. doi:10.1007/s10479-011-1012-2. · Zbl 1301.90041
[76] Qu, R. & Burke, E. K. (2005a). Hybrid variable neighbourhood hyper-heuristics for exam timetabling problems. In Proceedings of the MIC2005: The sixth metaheuristics international conference, Vienna, Austria. http://www.cs.nott.ac.uk/rxq/files/MIC05.pdf. Accessed 28 June 2008.
[77] Qu, R. & Burke, E. K. (2005b). Analysing the high level heuristics within a graph based hyper-heuristic (Computer Science Technical Report No. NOTTCS-TR-2005-3). School of Computer Science and Information, University of Nottingham.
[78] Qu, R; Burke, EK, Hybridisations within a graph based hyper-heuristic framework for university timetabling problems, Journal of the Operational Research Society, 60, 1273-1285, (2009) · Zbl 1196.90071
[79] Qu, R; Burke, EK; McCollum, B, Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems, European Journal Operational Research, 198, 392-404, (2009) · Zbl 1163.90775
[80] Qu, R; Burke, EK; McCollum, B; Merlot, LTG; Lee, SY, A survey of search methodologies and automated system development for examination timetabling, Journal of Scheduling, 12, 55-89, (2009) · Zbl 1279.90071
[81] Raghavjee, R., & Pillay, N. (2012). A comparison of genetic algorithms and genetic programming in solving the school timetabling problem. In Proceedings of the 4th world conference on nature and biologically inspired computing (NaBIC ’12) (pp. 98-103).
[82] Rahman, S. A., Bargiela, A., Burke, E. K., Ozcan, E. & McCollum, B. (2009). Construction of examination timetables based on ordering heuristics. In Proceedings of the 24th international symposium on computer and information science (pp. 680-685).
[83] Rattadilok, P, An investigation and extension of a hyper-heuristic framework, Informatica, 34, 523-534, (2010)
[84] Resende, M. G. C. & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures (http://www.research.att.com/mgcr/doc/sgrasp-hmetah.pdf). In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219-249). · Zbl 1102.90384
[85] Ross, P. & Marin-Blazquez, J. G. (2005). Constructive hyper-heuristics in class timetabling. In Proceedings of the IEEE congress of evolutionary computation CEC ’05 (pp. 1493-1500).
[86] Ross, P. (2005). Hyper-heuristics. In E. K. Burke & G. Kendall (Eds.), Search methodologies introductory tutorials in optimization and decision support techniques, Chapter 17 (pp. 529-556). Berlin: Springer.
[87] Ross, P. (2014). Hyper-heuristics. In E. K. Burke, & G. Kendall (Eds.), Search methodologies: Introductory tutorials in optimization and decision support techniques (pp. 611-638). · Zbl 1196.90071
[88] Ross, P., Marin-Blazquez, J. G. & Hart, E. (2004). Hyper-heuristics applied to class and exam timetabling problems. In Proceedings of the IEEE congress of evolutionary computation CEC ’04 (pp. 1691-1698).
[89] Rossi-Doria, O. & Paechter, B. (2003). A hyperheuristic approach to course timetabling problems using an evolutionary algorithm, http://www.metaheuristics.net/media/documents/hyperEA.pdf. Accessed 12 February 2012.
[90] Ryser-Welsh, P. & Miller, J. (2014). A review of hyper-heuristic frameworks. In Proceedings of the 50th anniversary convention of the AISB, 1-4 April 2014, London, http://doc.gold.ac.uk/aisb50/.
[91] Sabar, N. R. & Ayob, M. (2009). Examination timetabling using scatter search hyper-heuristic. In Proceedings of the 2nd conference on data mining and optimization, 27-28 October 2009, Selangor, Malaysia (pp. 127-131).
[92] Sabar, N. R., Ayob, M., Qu, R., & Kendall, G. (2011). A graph colouring constructive hyper-heuristic for examination timetabling problems. Applied Intelligence. doi:10.1007/s10489-011-0309-9. · Zbl 1246.90063
[93] Sabar, N. R. Ayob, M., Kendall, G. & Qu, R. (2013). Grammatical evolution hyper-heuristic for combinatorial optimization problems. IEEE Transactions on Evolutionary Computation, in press, http://www.cs.nott.ac.uk/rxq/files/TEC13.pdf. Accessed 22 April 2013.
[94] Sin, E. S. & Kham, N. S. M. (2012). Hyper heuristic based on great deluge and its variants for exam timetabling problem. Cornell University Library, arXiv:1202.1891 Accessed 12 February 2012. · Zbl 0949.65003
[95] Smith, KA; Abramson, D; Duke, D, Hopfield neural networks for timetabling: formulations, methods, and comparative results, Computers and Industrial Engineering, 44, 283-305, (2003)
[96] Snyman, J. A. (2005). Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms. Berlin: Springer. · Zbl 1104.90003
[97] Socha, K., Knowles, J. & Sampels, M. (2002). A max-min ant system for the university course timetabling problem. In Proceedings of the 3rd international workshop on ant algorithms, lecture notes in computer science (Vol. 2463, pp. 1-13).
[98] Soghier, A; Qu, R, Adaptive selection of heuristics for assigning time slots and rooms in exam timetables, Applied Intelligence, 39, 438-450, (2013)
[99] Soria-Alcaraz, J. A., Ochoa, G., Swan, J., Carpio, M., Puga, H., & Burke, E. K. (2014). Effective learning hyper-heuristics for the course timetabling problem. European Journal of Operational Research. doi:10.1016/j.ejor.2014.03.046. · Zbl 1338.90183
[100] Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
[101] Swan, J., Ozcan, E. & Kendall, G. (2011). Hyperion—a recursive hyper-heuristic framework. In C. A. C. Coello (Ed.), Proceedings of LION, lecture notes in computer science (Vol. 6683, pp. 616-630).
[102] Swan, J., Ozcan, E., & Kendall, G. (2012). Co-evolving add and delete heuristics. In Proceedings of the international conference on the practice and theory of automated timetabling (PATAT 2012), 29-31 August, Son, Norway (pp. 395-399).
[103] Swan, J; Woodward, J, Searching the hyper-heuristic design space, Cognitive Computation, 6, 66-73, (2014)
[104] Topcuoglu, HR; Ucar, A; Altin, L, A hyper-heuristic based framework for dynamic optimization problems, Applied Soft Computing, 19, 236-251, (2014)
[105] van Laarhoven, P. J. M., & Aarts, E. M. L. (1987). Simulated annealing: Theory and applications. Berlin: Springer. · Zbl 0643.65028
[106] Yang, Y. & Petrovic, S. (2004). A novel similarity measure for heuristic selection in examination timetabling. In The proceedings of the international conference on the practice and theory of automated timetabling, PATAT 2004 (pp. 247-269). · Zbl 1162.90440
[107] Zimmermann, H. (2001). Fuzzy set theory and its applications. Boston: Kluwer.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.