zbMATH — the first resource for mathematics

Forecasting portfolio returns using weighted fuzzy time series methods. (English) Zbl 1337.62333
Summary: We propose using weighted fuzzy time series (FTS) methods to forecast the future performance of returns on portfolios. We model the uncertain parameters of the fuzzy portfolio selection models using a possibilistic interval-valued mean approach, and approximate the uncertain future return on a given portfolio by means of a trapezoidal fuzzy number. Introducing some modifications into the classical models of fuzzy time series, based on weighted operators, enables us to generate trapezoidal numbers as forecasts of the future performance of the portfolio returns. This fuzzy forecast makes it possible to approximate both the expected return and the risk of the investment through the value and ambiguity of a fuzzy number.
We incorporate our proposals into classical fuzzy time series methods and analyze their effectiveness compared with classical weighted fuzzy time series models, using historical returns on assets from the Spanish stock market. When our weighted FTS proposals are used to point-wise forecast portfolio returns the one-step ahead accuracy is improved, also with respect to non-fuzzy forecasting methods.

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M86 Inference from stochastic processes and fuzziness
91B84 Economic time series analysis
91G10 Portfolio theory
Full Text: DOI
[1] Markowitz, H. M., Portfolio selection, J. Finance, 7, 77-91, (1952)
[2] Konno, H.; Yamazaki, H., Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market, Manag. Sci., 37, 519-531, (1991)
[3] Lai, T., Portfolio selection with skewness: a multiple-objective approach, Rev. Quant. Finance Account., 1, 293-305, (1991)
[4] Ballestero, E.; Romero, C., Portfolio selection: a compromise programming solution, J. Oper. Res. Soc., 47, 11, 1377-1386, (1996) · Zbl 0863.90013
[5] Steuer, R. E.; Qi, Y.; Hirschberger, M., Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection, Ann. Oper. Res., 152, 297-317, (2007) · Zbl 1132.91480
[6] Watada, J., Fuzzy portfolio selection and its applications to decision making, Tatra Mt. Math. Publ., 13, 219-248, (1997) · Zbl 0915.90008
[7] Tanaka, H.; Guo, P., Portfolio selection based on upper and lower exponential possibility distributions, Eur. J. Oper. Res., 114, 115-126, (1999) · Zbl 0945.91017
[8] Inuiguchi, M.; Ramík, J., Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem, Fuzzy Sets Syst., 111, 3-28, (2000) · Zbl 0938.90074
[9] Carlsson, C.; Fullér, R.; Majlender, P., A possibilistic approach to selecting portfolios with highest utility score, Fuzzy Sets Syst., 131, 13-21, (2002) · Zbl 1027.91038
[10] Vercher, E.; Bermúdez, J. D.; Segura, J. V., Fuzzy portfolio optimization under downside risk measures, Fuzzy Sets Syst., 158, 769-782, (2007) · Zbl 1190.91140
[11] León, T.; Liern, V.; Vercher, E., Viability of infeasible portfolio selection problems: a fuzzy approach, Eur. J. Oper. Res., 139, 178-189, (2002) · Zbl 1007.90082
[12] Verdegay, J. L.; Yager, R. R.; Bonissone, P. P., On heuristics as a fundamental constituent of soft computing, Fuzzy Sets Syst., 159, 7, 846-855, (2008)
[13] Hasuike, T.; Katagiri, H.; Ishii, H., Portfolio selection problems with random fuzzy variable returns, Fuzzy Sets Syst., 160, 2579-2596, (2009) · Zbl 1186.91193
[14] Bhattacharyya, R.; Kar, S.; Majumder, D. D., Fuzzy mean-variance-skewness portfolio selection models by interval analysis, Comput. Math. Appl., 61, 1, 126-137, (2011) · Zbl 1207.91059
[15] Vercher, E.; Bermudez, J. D., Portfolio optimization using a credibility mean absolute semi-deviation model, Expert Syst. Appl., 42, 7121-7131, (2015)
[16] Anagnostopoulos, K. P.; Mamanis, G., The mean-variance cardinality constrained portfolio optimization problem: an experimental evaluation of five multiobjective evolutionary algorithms, Expert Syst. Appl., 38, 14208-14217, (2011)
[17] Bermúdez, J. D.; Segura, J. V.; Vercher, E., A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection, Fuzzy Sets Syst., 188, 16-26, (2012) · Zbl 1238.91142
[18] Gupta, P.; Inuiguchi, M.; Mehlavat, M. H.; Mittal, G., Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints, Inf. Sci., 229, 1-17, (2013) · Zbl 1293.91173
[19] Liagkouras, K.; Metaxiotis, K., Efficient portfolio construction with the use of multiobjective evolutionary algorithms: best practices and performance metrics, Int. J. Inf. Technol. Decis. Mak., 14, 3, 535-564, (2015)
[20] Song, Q.; Chissom, B. S., Forecasting enrollments with fuzzy time series - part I, Fuzzy Sets Syst., 54, 1-9, (1993)
[21] Song, Q.; Chissom, B. S., Fuzzy time series and its models, Fuzzy Sets Syst., 54, 269-277, (1993) · Zbl 0792.62087
[22] Song, Q.; Chissom, B. S., Forecasting enrollments with fuzzy time series - part II, Fuzzy Sets Syst., 62, 1-8, (1994)
[23] Chen, S. M., Forecasting enrollments based on fuzzy time series, Fuzzy Sets Syst., 81, 311-319, (1996)
[24] Huarng, K. H., Effective lengths of intervals to improve forecasting in fuzzy time series, Fuzzy Sets Syst., 123, 387-394, (2001) · Zbl 0992.91077
[25] Li, S. T.; Cheng, Y. C.; Lin, S. Y., A fcm-based deterministic forecasting model for fuzzy time series, Comput. Math. Appl., 56, 12, 3052-3063, (2008) · Zbl 1165.62342
[26] Wang, L.; Liu, X.; Pedrycz, W., Effective intervals determined by information granules to improve forecasting in fuzzy time series, Expert Syst. Appl., 40, 5673-5679, (2013)
[27] Yu, H-K., Weighted fuzzy time series models for TAIEX forecasting, Physica A, 349, 609-624, (2005)
[28] Cheng, C. H.; Chen, T. L.; Teoh, H. J.; Chiang, C. H., Fuzzy time series based on adaptative expectation model for TAIEX forecasting, Expert Syst. Appl., 34, 2, 1126-1132, (2008)
[29] Lee, M. H.; Effendi, R.; Ismail, Z., Modified weighted for enrollment forecasting based on fuzzy time series, Mathematika, 25, 1, 67-78, (2009)
[30] Huarng, K. H.; Yu, H-K., A type 2 fuzzy time series model for stock index forecasting, Physica A, 353, 445-462, (2005)
[31] Hung, K. C.; Lin, K. P., Long-term business cycle forecasting through a potential intuitionistic fuzzy least-squares support vector regression approach, Inf. Sci., 224, 37-48, (2013)
[32] Singh, P.; Borah, B., Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization, Int. J. Approx. Reason., 55, 812-833, (2014) · Zbl 1316.91036
[33] Wang, L.; Liu, X.; Pedrycz, W.; Shao, Y., Determination of temporal information granules to improve forecasting in fuzzy time series, Expert Syst. Appl., 41, 3134-3142, (2014)
[34] Chen, Y-S.; Cheng, C-H.; Tsai, W-L., Modeling Fitting-function-based fuzzy time series patterns for evolving stock index forecasting, Appl. Intell., 41, 327-347, (2014)
[35] Rubio, A.; Bermúdez, J. D.; Vercher, E., Comparative analysis of forecasting portfolio returns using soft computing technologies, (Alonso, J. M.; Bustince, H.; Reformat, M., Proceedings of the 2015 Conference of the IFSA and the EUSFLAT, Advances in Intelligent Systems Research, vol. 89, (2007), Atlantis Press Paris), 617-623
[36] Zhou, R.; Yang, Z.; Yu, M.; Ralescu, D. A., A portfolio optimization model based on information entropy and fuzzy time series, Fuzzy Optim. Decis. Mak., 14, 381-397, (2015)
[37] Bermúdez, J. D.; Segura, J. V.; Vercher, E., A fuzzy ranking strategy for portfolio selection applied to the Spanish stock market, (IEEE International Fuzzy Systems Conference, Fuzz-IEEE2007, (2007)), 1-4
[38] Vercher, E.; Bermúdez, J. D., A possibilistic mean-downside risk-skewness model for efficient portfolio selection, IEEE Trans. Fuzzy Syst., 21, 3, 585-595, (2013)
[39] Saborido, R.; Ruiz, A. B.; Bermúdez, J. D.; Vercher, E.; Luque, M., Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection, Appl. Soft Comput., 39, 48-63, (2016)
[40] Dubois, D.; Prade, H., The mean value of a fuzzy number, Fuzzy Sets Syst., 24, 279-300, (1987) · Zbl 0634.94026
[41] Carlsson, C.; Fullér, R., On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets Syst., 122, 315-326, (2001) · Zbl 1016.94047
[42] Fullér, R.; Majlender, P., On weighted possibilistic mean and variance of fuzzy numbers, Fuzzy Sets Syst., 136, 363-374, (2003) · Zbl 1022.94032
[43] Delgado, M.; Vila, M. A.; Voxman, W., On a canonical representation of fuzzy numbers, Fuzzy Sets Syst., 93, 125-135, (1998) · Zbl 0916.04004
[44] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 3, 338-353, (1965) · Zbl 0139.24606
[45] Huarng, K. H., Heuristic models of fuzzy time series for forecasting, Fuzzy Sets Syst., 123, 369-386, (2001) · Zbl 0992.91078
[46] Singh, P.; Borah, B., High-order fuzzy-neuro expert system for time series forecasting, Knowl.-Based Syst., 46, 12-21, (2013)
[47] Lu, W.; Chen, X.; Pedrycz, W.; Liu, X.; Yang, J., Using interval information granules to improve forecasting in fuzzy time series, Int. J. Approx. Reason., 57, 1-18, (2015) · Zbl 1337.62306
[48] Liu, H-T., An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers, Fuzzy Optim. Decis. Mak., 6, 63-80, (2007) · Zbl 1105.62092
[49] Hyndman, R. J.; Koehler, A. B.; Ord, J. K.; Snyder, R. D., Forecasting with exponential smoothing. the state space approach, (2008), Springer Berlin · Zbl 1211.62165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.