Chen, Caisheng; Song, Hongxue Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in \(\mathbb{R}^N\). (English) Zbl 1413.35124 Appl. Math., Praha 61, No. 3, 317-337 (2016). Summary: In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation \[ -\Delta_Nu+b| u|^{N-2}u-\Delta_N(u^2)u=h(u),\quad x\in\mathbb{R}^N, \] where \(\Delta_N\) is the \(N\)-Laplacian operator, \(h(u)\) is continuous and behaves as \(\exp (\alpha| u|^{{N}/{(N-1)}})\) when \(| u|\to\infty\). Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution \(u(x)\in W^{1,N}(\mathbb{R}^N)\) with \(u(x)\to 0\) as \(| x|\to\infty\) is established. Cited in 3 Documents MSC: 35D30 Weak solutions to PDEs 35J20 Variational methods for second-order elliptic equations 35J92 Quasilinear elliptic equations with \(p\)-Laplacian Keywords:\(N\)-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold PDF BibTeX XML Cite \textit{C. Chen} and \textit{H. Song}, Appl. Math., Praha 61, No. 3, 317--337 (2016; Zbl 1413.35124) Full Text: DOI Link OpenURL References: [1] Adachi, S.; Tanaka, K., Trudinger type inequalities in R\^{}{N} and their best exponents, Proc. Am. Math. Soc., 128, 2051-2057, (2000) · Zbl 0980.46020 [2] M. Badiale, E. Serra: Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach. Universitext, Springer, London, 2011. · Zbl 1214.35025 [3] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-345, (1983) · Zbl 0533.35029 [4] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490, (1983) · Zbl 0526.46037 [5] T. Cazenave: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, 2003. · Zbl 1055.35003 [6] Colin, M.; Jeanjean, L., Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 56, 213-226, (2004) · Zbl 1035.35038 [7] Bouard, A.; Hayashi, N.; Saut, J.-C., Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189, 73-105, (1997) · Zbl 0948.81025 [8] Figueiredo, D.G.; Miyagaki, O. H.; Ruf, B., Elliptic equations in R\^{}{2} with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 3, 139-153, (1995) · Zbl 0820.35060 [9] Ó, J.M. B., Semilinear Dirichlet problems for the N-Laplacian in R\^{}{N} with nonlinearities in the critical growth range, Differ. Integral Equ., 9, 967-979, (1996) · Zbl 0858.35043 [10] Ó, J.M. B., N-Laplacian equations in R\^{}{N} with critical growth, Abstr. Appl. Anal., 2, 301-315, (1997) · Zbl 0932.35076 [11] Ó, J.M. B.; Medeiros, E.; Severo, U., On a quasilinear nonhomogeneous elliptic equation with critical growth in R\^{}{N}, J. Differ. Equations, 246, 1363-1386, (2009) · Zbl 1159.35027 [12] Ó, J.M. B.; Miyagaki, O. H.; Soares, S. H. M., Soliton solutions for quasilinear Schrödinger equations: the critical exponential case, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 67, 3357-3372, (2007) · Zbl 1151.35016 [13] Ó, J.M. B.; Severo, U., Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var. Partial Differ. Equ., 38, 275-315, (2010) · Zbl 1194.35118 [14] Edmunds, D. E.; Ilyin, A. A., Asymptotically sharp multiplicative inequalities, Bull. London Math. Soc., 27, 71-74, (1995) · Zbl 0840.46018 [15] Fang, X.-D.; Szulkin, A., Multiple solutions for a quasilinear Schrödinger equation, J. Differ. Equations, 254, 2015-2032, (2013) · Zbl 1263.35113 [16] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics, Springer, Berlin, 2001. · Zbl 1042.35002 [17] Hasse, R.W., A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys., B, 37, 83-87, (1980) [18] Kurihara, S., Exact soliton solution for superfluid film dynamics, J. Phys. Soc. Japan, 50, 3801-3805, (1981) [19] Laedke, E.W.; Spatschek, K. H.; Stenflo, L., Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24, 2764-2769, (1983) · Zbl 0548.35101 [20] E. H. Lieb, M. Loss: Analysis. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, 2001. [21] Lions, P.-L., The concentration-compactness principle in the calculus of variations. the locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 223-283, (1984) · Zbl 0704.49004 [22] Liu, J.-Q.; Wang, Y.-Q.; Wang, Z.-Q., Soliton solutions for quasilinear Schrödinger equations, II. J. Differ. Equations, 187, 473-493, (2003) · Zbl 1229.35268 [23] Liu, J.-Q.; Wang, Y.-Q.; Wang, Z.-Q., Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equations, 29, 879-901, (2004) · Zbl 1140.35399 [24] Makhankov, V.G.; Fedyanin, V. K., Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phys. Rep., 104, 1-86, (1984) [25] Quispel, G.R.W.; Capel, H.W., Equation of motion for the Heisenberg spin chain, Physica A, 110, 41-80, (1982) [26] Ruiz, D.; Siciliano, G., Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 23, 1221-1233, (2010) · Zbl 1189.35316 [27] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta Math., 111, 247-302, (1964) · Zbl 0128.09101 [28] Severo, U., Existence of weak solutions for quasilinear elliptic equations involving the p-Laplacian, 16, (2008) · Zbl 1173.35483 [29] Wang, Y.; Yang, J.; Zhang, Y., Quasilinear elliptic equations involving the \(N\)-Laplacian with critical exponential growth in R\^{}{N}. nonlinear anal., Theory Methods Appl., Ser. A, Theory Methods, 71, 6157-6169, (2009) · Zbl 1180.35262 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.