×

Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields. (English) Zbl 1342.14055

The Cohen-Lenstra heuristics [H. Cohen and H. W. Lenstra jun., Lect. Notes Math. 1068, 33–62 (1984; Zbl 0558.12002)] conjectured that a particular finite abelian group should occur as the class group of a quadratic imaginary field with frequency inversely proportional to its number of automorphisms. The paper under review was motivated by the Cohen-Lenstra heuristics over function fields. In particular, the authors prove that for \(\ell > 2\) a prime and \(A\) a finite abelian \(\ell\)-group, there exists \(Q = Q(A)\) such that for \(q\) greater than \(Q\), a positive fraction of quadratic extensions of \(\mathbb F_q(t)\) have the \(\ell\)-part of their class group isomorphic to \(A\). The key ingredient in the proof surprisingly uses stable homology of Hurwitz spaces. More precisely, let \(c\) be a conjugacy class in a finite group \(G\). The Hurwitz space \(\mathrm{Hur}^c_{G, n}\) parameterizes \(G\)-covers of the complex projective line with \(n\) branch points, each of which has monodromy belonging to the conjugacy class \(c\). Assume that \(c\) generates \(G\) and that for any subgroup \(H\leq G\), the intersection of \(c\) with \(H\) is either empty or a conjugacy class of \(H\). Then the authors show that there exist integers \(A, B, D > 0\) such that \(\mathrm{Hur}^c_{G,n}\) and \(\mathrm{Hur}^c_{G,n+D}\) have the same \(p\)th Betti number whenever \(n\geq Ap + B\). A number of interesting consequences, related work, and conjectures are also discussed in detail.

MSC:

14H10 Families, moduli of curves (algebraic)
11R58 Arithmetic theory of algebraic function fields
14H30 Coverings of curves, fundamental group
11G20 Curves over finite and local fields
14G17 Positive characteristic ground fields in algebraic geometry

Citations:

Zbl 0558.12002

References:

[1] Groupes de Monodromie en Géométrie Algébrique. II, Deligne, P. and Katz, N., Eds., New York: Springer-Verlag, 1973, vol. 340. · Zbl 0258.00005 · doi:10.1007/BFb0060505
[2] D. Abramovich, A. Corti, and A. Vistoli, ”Twisted bundles and admissible covers,” Comm. Algebra, vol. 31, iss. 8, pp. 3547-3618, 2003. · Zbl 1077.14034 · doi:10.1081/AGB-120022434
[3] J. D. Achter, ”Results of Cohen-Lenstra type for quadratic function fields,” in Computational Arithmetic Geometry, Providence, RI: Amer. Math. Soc., 2008, vol. 463, pp. 1-7. · Zbl 1166.11018 · doi:10.1090/conm/463/09041
[4] J. D. Achter and R. Pries, ”The integral monodromy of hyperelliptic and trielliptic curves,” Math. Ann., vol. 338, iss. 1, pp. 187-206, 2007. · Zbl 1129.11027 · doi:10.1007/s00208-006-0072-0
[5] V. I. Arnolcprimed, ”The cohomology ring of the group of dyed braids,” Mat. Zametki, vol. 5, pp. 227-231, 1969. · Zbl 0277.55002 · doi:10.1007/BF01098313
[6] E. Artin, ”Theory of braids,” Ann. of Math., vol. 48, pp. 101-126, 1947. · Zbl 0030.17703 · doi:10.2307/1969218
[7] A. Borel, ”Stable real cohomology of arithmetic groups,” Ann. Sci. École Norm. Sup., vol. 7, pp. 235-272 (1975), 1974. · Zbl 0316.57026
[8] C. P. Boyer, J. C. Hurtubise, and R. J. Milgram, ”Stability theorems for spaces of rational curves,” Internat. J. Math., vol. 12, iss. 2, pp. 223-262, 2001. · Zbl 1110.58303 · doi:10.1142/S0129167X01000721
[9] D. Byeon, ”Indivisibility of class numbers of imaginary quadratic function fields,” Acta Arith., vol. 132, iss. 4, pp. 373-376, 2008. · Zbl 1170.11042 · doi:10.4064/aa132-4-6
[10] L. Carlitz, ”The arithmetic of polynomials in a Galois field,” Proc. Natl. Acad. Sci. USA, vol. 17, pp. 120-122, 1931. · Zbl 0001.12401 · doi:10.1073/pnas.17.2.120
[11] R. Charney and M. W. Davis, ”Finite \(K(\pi, 1)\)s for Artin groups,” in Prospects in Topology, Princeton, NJ: Princeton Univ. Press, 1995, vol. 138, pp. 110-124. · Zbl 0930.55006
[12] F. R. Cohen, T. J. Lada, and P. J. May, The Homology of Iterated Loop Spaces, New York: Springer-Verlag, 1976, vol. 533. · Zbl 0334.55009 · doi:10.1007/BFb0080464
[13] H. Cohen and H. W. Lenstra Jr., ”Heuristics on class groups of number fields,” in Number theory, Noordwijkerhout 1983, New York: Springer-Verlag, 1984, vol. 1068, pp. 33-62. · Zbl 0558.12002 · doi:10.1007/BFb0099440
[14] H. Cohen and J. Martinet, ”Étude heuristique des groupes de classes des corps de nombres,” J. Reine Angew. Math., vol. 404, pp. 39-76, 1990. · Zbl 0699.12016 · doi:10.1515/crll.1990.404.39
[15] C. Damiolini, The braid group and the arc complex, 2013.
[16] B. Datskovsky and D. J. Wright, ”Density of discriminants of cubic extensions,” J. Reine Angew. Math., vol. 386, pp. 116-138, 1988. · Zbl 0632.12007 · doi:10.1515/crll.1988.386.116
[17] M. Daub, J. Lang, M. Merling, A. M. Pacelli, N. Pitiwan, and M. Rosen, Function fields with class number indivisible by a prime \(\ell\), 2011. · Zbl 1263.11098 · doi:10.4064/aa150-4-2
[18] A. J. DeJong and N. Katz, Counting the number of curves over a finite field, 2001.
[19] P. Deligne and M. Rapoport, ”Les schémas de modules de courbes elliptiques,” in Modular Functions of One Variable, II, New York: Springer-Verlag, 1973, vol. 349, pp. 143-316. · Zbl 0281.14010 · doi:10.1007/978-3-540-37855-6
[20] P. Deligne, ”La conjecture de Weil. I,” Inst. Hautes Études Sci. Publ. Math., vol. 43, pp. 273-307, 1974. · Zbl 0287.14001 · doi:10.1007/BF02684373
[21] P. Deligne, ”La conjecture de Weil. II,” Inst. Hautes Études Sci. Publ. Math., vol. 52, pp. 137-252, 1980. · Zbl 0456.14014 · doi:10.1007/BF02684780
[22] J. S. Ellenberg and A. Venkatesh, ”Counting extensions of function fields with bounded discriminant and specified Galois group,” in Geometric Methods in Algebra and Number Theory, Boston: Birkhäuser, 2005, vol. 235, pp. 151-168. · Zbl 1085.11057 · doi:10.1007/0-8176-4417-2_7
[23] J. S. Ellenberg and A. Venkatesh, Letter to A. J. de Jong, 2008. · Zbl 1099.11068
[24] &. Fouvry and J. Klüners, ”On the 4-rank of class groups of quadratic number fields,” Invent. Math., vol. 167, iss. 3, pp. 455-513, 2007. · Zbl 1126.11062 · doi:10.1007/s00222-006-0021-2
[25] E. Freitag and R. Kiehl, Étale Cohomology and the Weil Conjecture, New York: Springer-Verlag, 1988, vol. 13. · Zbl 0643.14012 · doi:10.1007/978-3-662-02541-3
[26] M. D. Fried and H. Völklein, ”The inverse Galois problem and rational points on moduli spaces,” Math. Ann., vol. 290, iss. 4, pp. 771-800, 1991. · Zbl 0763.12004 · doi:10.1007/BF01459271
[27] E. Friedman and L. C. Washington, ”On the distribution of divisor class groups of curves over a finite field,” in Théorie des Nombres, Berlin: de Gruyter, 1989, pp. 227-239. · Zbl 0693.12013 · doi:10.1515/9783110852790.227
[28] C. Friesen, ”Class number divisibility in real quadratic function fields,” Canad. Math. Bull., vol. 35, iss. 3, pp. 361-370, 1992. · Zbl 0727.11045 · doi:10.4153/CMB-1992-048-5
[29] D. Garton, ”Random matrices, the Cohen-Lenstra heuristics, and roots of unity,” Algebra Number Theory, vol. 9, iss. 1, pp. 149-171, 2015. · Zbl 1326.11068 · doi:10.2140/ant.2015.9.149
[30] A. Grothendieck, Revêtements étales et Groupe Fondamental. Fasc. II: Exposés 6, 8 à 11, Paris: Institut des Hautes Études Scientifiques, 1963, vol. 1960/61.
[31] R. Hain and E. Looijenga, ”Mapping class groups and moduli spaces of curves,” in Algebraic Geometry-Santa Cruz 1995, Providence, RI: Amer. Math. Soc., 1997, vol. 62, pp. 97-142. · Zbl 0914.14013
[32] C. Hall, ”Big symplectic or orthogonal monodromy modulo \(l\),” Duke Math. J., vol. 141, iss. 1, pp. 179-203, 2008. · Zbl 1205.11062 · doi:10.1215/S0012-7094-08-14115-8
[33] J. L. Harer, ”Stability of the homology of the mapping class groups of orientable surfaces,” Ann. of Math., vol. 121, iss. 2, pp. 215-249, 1985. · Zbl 0579.57005 · doi:10.2307/1971172
[34] A. Hatcher and N. Wahl, ”Stabilization for mapping class groups of 3-manifolds,” Duke Math. J., vol. 155, iss. 2, pp. 205-269, 2010. · Zbl 1223.57004 · doi:10.1215/00127094-2010-055
[35] A. Hurwitz, ”Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten,” Math. Ann., vol. 39, pp. 1-60, 1891.
[36] N. M. Katz and S. Lang, ”Finiteness theorems in geometric classfield theory,” Enseign. Math., vol. 27, iss. 3-4, pp. 285-319 (1982), 1981. · Zbl 0495.14011
[37] F. F. Knudsen, ”The projectivity of the moduli space of stable curves. II. The stacks \(M_{g,n}\),” Math. Scand., vol. 52, iss. 2, pp. 161-199, 1983. · Zbl 0544.14020
[38] G. Malle, ”Cohen-Lenstra heuristic and roots of unity,” J. Number Theory, vol. 128, iss. 10, pp. 2823-2835, 2008. · Zbl 1225.11143 · doi:10.1016/j.jnt.2008.01.002
[39] H. Matsumura, Commutative Ring Theory, Cambridge: Cambridge Univ. Press, 1986, vol. 8. · Zbl 0603.13001
[40] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, New York: Springer-Verlag, 1973, vol. 73. · Zbl 0292.10016
[41] R. S. Palais, ”Local triviality of the restriction map for embeddings,” Comment. Math. Helv., vol. 34, pp. 305-312, 1960. · Zbl 0207.22501 · doi:10.1007/BF02565942
[42] D. Quillen, ”Finite generation of the groups \(K_i\) of rings of algebraic integers,” in Algebraic \(K\)-theory, I: Higher \(K\)-theories, New York: Springer-Verlag, 1973, vol. 341, pp. 179-198. · Zbl 0355.18018
[43] M. Romagny and S. Wewers, ”Hurwitz spaces,” in Groupes de Galois Arithmétiques et Différentiels, Paris: Soc. Math. France, 2006, vol. 13, pp. 313-341. · Zbl 1156.14314
[44] M. Rosen, ”S-units and S-class group in algebraic function fields,” J. Algebra, vol. 26, pp. 98-108, 1973. · Zbl 0265.12003 · doi:10.1016/0021-8693(73)90036-7
[45] M. Salvetti, ”Topology of the complement of real hyperplanes in \({\mathbf C}^N\),” Invent. Math., vol. 88, iss. 3, pp. 603-618, 1987. · Zbl 0594.57009 · doi:10.1007/BF01391833
[46] G. Segal, ”The topology of spaces of rational functions,” Acta Math., vol. 143, iss. 1-2, pp. 39-72, 1979. · Zbl 0427.55006 · doi:10.1007/BF02392088
[47] N. Wahl, ”Homological stability for mapping class groups of surfaces,” in Handbook of Moduli. Vol. III, Int. Press, 2013, vol. 26, pp. 547-583. · Zbl 1322.57016
[48] L. C. Washington, ”Some remarks on Cohen-Lenstra heuristics,” Math. Comp., vol. 47, iss. 176, pp. 741-747, 1986. · Zbl 0627.12002 · doi:10.2307/2008187
[49] S. Wewers, Construction of Hurwitz spaces, 1998. · Zbl 0925.14002
[50] J. Yu, ”Toward a proof of the Cohen-Lenstra conjecture in the function field case,” preprint, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.