×

Classicity of overconvergent modular forms. (Classicité de formes modulaires surconvergentes.) (English. French summary) Zbl 1407.11078

Summary: We generalize R. F. Coleman’s [Invent. Math. 124, No. 1–3, 215–241 (1996; Zbl 0851.11030)] classicity criterion for overconvergent modular forms on modular curves to the case of some PEL Shimura variety of type (A) or (C) associated to a reductive group unramified over \(\mathbb{Q}_p\). Our demonstration is inspired by the analytic continuation method of K. Buzzard [J. Am. Math. Soc. 16, No. 1, 29–55 (2003; Zbl 1076.11029)] and P. L. Kassaei [Duke Math. J. 132, No. 3, 509–529 (2006; Zbl 1112.11020)].

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
11F85 \(p\)-adic theory, local fields
11F60 Hecke-Petersson operators, differential operators (several variables)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] F. Andreatta, A. Iovita, and V. Pilloni, ”\(p\)-adic families of Siegel modular cuspforms,” Ann. of Math., vol. 181, iss. 2, pp. 623-697, 2015. · Zbl 1394.11045
[2] A. Abbes and A. Mokrane, ”Sous-groupes canoniques et cycles évanescents \(p\)-adiques pour les variétés abéliennes,” Publ. Math. Inst. Hautes Études Sci., vol. 99, pp. 117-162, 2004. · Zbl 1062.14057
[3] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propres, 1996.
[4] S. Bosch, ”Half a century of rigid analytic spaces,” Pure Appl. Math. Q., vol. 5, iss. 4, Special Issue: In honor of John Tate. Part 1, pp. 1435-1467, 2009. · Zbl 1256.32023
[5] S. Bosch and W. Lütkebohmert, ”Formal and rigid geometry. II. Flattening techniques,” Math. Ann., vol. 296, iss. 3, pp. 403-429, 1993. · Zbl 0808.14018
[6] K. Buzzard, ”Analytic continuation of overconvergent eigenforms,” J. Amer. Math. Soc., vol. 16, iss. 1, pp. 29-55, 2003. · Zbl 1076.11029
[7] R. F. Coleman, ”Classical and overconvergent modular forms,” Invent. Math., vol. 124, iss. 1-3, pp. 215-241, 1996. · Zbl 0851.11030
[8] L. Fargues, ”La filtration de Harder-Narasimhan des schémas en groupes finis et plats,” J. Reine Angew. Math., vol. 645, pp. 1-39, 2010. · Zbl 1199.14015
[9] U. Görtz, ”On the flatness of models of certain Shimura varieties of PEL-type,” Math. Ann., vol. 321, iss. 3, pp. 689-727, 2001. · Zbl 1073.14526
[10] U. Görtz, ”On the flatness of local models for the symplectic group,” Adv. Math., vol. 176, iss. 1, pp. 89-115, 2003. · Zbl 1073.14526
[11] X. He, ”Normality and Cohen-Macaulayness of local models of Shimura varieties,” Duke Math. J., vol. 162, iss. 13, pp. 2509-2523, 2013. · Zbl 1327.14121
[12] C. Johansson, ”Classicality for small slope overconvergent automorphic forms on some compact PEL Shimura varieties of type C,” Math. Ann., vol. 357, iss. 1, pp. 51-88, 2013. · Zbl 1346.11033
[13] P. L. Kassaei, ”A gluing lemma and overconvergent modular forms,” Duke Math. J., vol. 132, iss. 3, pp. 509-529, 2006. · Zbl 1112.11020
[14] R. Kiehl, ”Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie,” Invent. Math., vol. 2, pp. 191-214, 1967. · Zbl 0202.20101
[15] R. E. Kottwitz, ”Points on some Shimura varieties over finite fields,” J. Amer. Math. Soc., vol. 5, iss. 2, pp. 373-444, 1992. · Zbl 0796.14014
[16] K. Lan, Arithmetic Compactifications of PEL-type Shimura Varieties, Princeton, NJ: Princeton Univ. Press, 2013, vol. 36. · Zbl 1284.14004
[17] K. Lan, Higher Koecher’s principle. · Zbl 1416.11097
[18] K. Lan, ”Compactifications of PEL-type Shimura varieties in ramified characteristics,” Forum Math. Sigma, vol. 4, p. 98, 2016. · Zbl 1338.11056
[19] K. Lan, Integral models of toroidal compactifications with projective cone decompositions, 2015.
[20] V. Pilloni, ”Prolongement analytique sur les variétés de Siegel,” Duke Math. J., vol. 157, iss. 1, pp. 167-222, 2011. · Zbl 1315.11033
[21] V. Pilloni and B. Stroh, Surconvergence et classicité : le cas Hilbert, 2011.
[22] S. Sasaki, ”Analytic continuation of overconvergent Hilbert eigenforms in the totally split case,” Compos. Math., vol. 146, iss. 3, pp. 541-560, 2010. · Zbl 1206.11058
[23] Revêtements Étales et Groupe Fondamental, Grothendieck, A., Ed., New York: Springer-Verlag, 1971, vol. 224. · Zbl 0234.14002
[24] B. Stroh, ”Compactification de variétés de Siegel aux places de mauvaise réduction,” Bull. Soc. Math. France, vol. 138, iss. 2, pp. 259-315, 2010. · Zbl 1203.14048
[25] Y. Tian, ”Classicality of overconvergent Hilbert modular forms: case of quadratic inert degree,” Rend. Semin. Mat. Univ. Padova, vol. 132, pp. 133-229, 2014. · Zbl 1311.11036
[26] Y. Tian and L. Xiao, \(p\)-adic cohomology and classicality of overconvergent Hilbert modular forms, 2013. · Zbl 1423.11091
[27] T. Wedhorn, ”Ordinariness in good reductions of Shimura varieties of PEL-type,” Ann. Sci. École Norm. Sup., vol. 32, iss. 5, pp. 575-618, 1999. · Zbl 0983.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.