×

Monoïde libre et musique. Les musiciens ont-ils besoin des mathématiques? I. (Free monoid and music. Do musicians need mathematics? I). (French) Zbl 0659.00022

This is the first part of an article which deals with the possible use of mathematical or computer science methods in musical combinatorics, using automata, trees, algebraic structures,... The first part, presented here tries to sum up different researchs in this direction that have already been made (works by Forte, Lerdahl and Jackendoff, Greussay, Barbaud, Balzano, Riotte and the Project No.5 of Musical Research at I.R.C.A.M.). In the last paragraph, we present the first step of a new theoretical proposition that will be developed in the second part of the article (see Zbl 0658.20042).

MSC:

00A06 Mathematics for nonmathematicians (engineering, social sciences, etc.)
20M35 Semigroups in automata theory, linguistics, etc.
20M05 Free semigroups, generators and relations, word problems
68U99 Computing methodologies and applications
68Q70 Algebraic theory of languages and automata
05C05 Trees

Citations:

Zbl 0658.20042
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] 1. U. J. AALBERSBERG et G. ROZENBERG, Theory of Traces, Université de Leiden, Netherland, 1985. · Zbl 0601.68045
[2] 2. E. AMIOT, G. ASSAYAG, C. MALHERBE et A. RIOTTE, Duration Structure Generation and Recognition in Musical Writinf, I.C.M.C. 1986.
[3] 3. [Assayag 1984] G. ASSAYAG et C. MALHERBE, Manipulation et représentation d’objets musicaux, I.C.M.C. 1984.
[4] 4. [Assayag 1986] G. ASSAYAG, G. BUQUET, M. CASTELLENGO, J. KERGOMARD, C. MALHERBE, A. RIOTTE et D. TIMIS, Instruments, modèles, écritures, I.R.C.A.M., 1986.
[5] 5. [Balzano 1980] G. J. BALZANO, The Group-Theoretic Description of 12-Fold and Microtonal Pitch Systems, dans la revue Computer music journal, vol. 4, n^\circ 4, 1980.
[6] 6. B. S. BROOK, Musicology and the Computer, Musicology 1966-2000: a Practical Program, American Musicological Society, 1966.
[7] 7. [Barbaud 1965] P. BARBAUD, Introduction à la composition musicale automatique, Dunod, Paris, 1965.
[8] 8. [Barbaud 1968] P. BARBAUD, La musique discipline scientifique, Dunod, Paris, 1968.
[9] 9. [Barbaud 1976] P. BARBAUD, Ludus margaritis vitreis, I.R.I.A., 1976.
[10] 10. P. BARBAUD, Vis teriblis sonorum, I.R.I.A., 1976.
[11] 11. P. BARBAUD, Res musica, support du cours Informatique et musique, I.R.I.A., 1977.
[12] 12. M. Y. CHEN, Toward a Grammar of Singing: Tune-Text Association in Gregorian Chant, dans la revue Music perception, vol. 1, 1984.
[13] 13. [Cherlin 1986] M. CHERLIN, Alphonce’s Invariance Matrix and Lewin’s Inversionnal Clock: a New Approach Toward Reading Pitch-Class Matrices, dans la revue In theory only, vol. 19, n^\circ 2 et 3, 1986.
[14] 14. C. CHOFFRUT, Free Partially Commutative Monoids, L.I.T.P., 1986.
[15] 15. [Chomsky 1968] N. CHOMSKY, Le langage et la pensée, Payot, 1968.
[16] 16. R. CHRISMAN, Describing Structural Aspects of Pitch-Sets Using Successive-Interval Arrays, dans la revue Journal of music theory, vol. 21, n^\circ 1, 1984.
[17] 17. T. CLARK, Pitch Set Pedagogy Through Constructive Experiments, with Comments on Basic Atonal Theory, in In theory only, vol. 8, n^\circ 1, 1984.
[18] 18. R. CORI et D. PERRIN, Automates et commutations partielles, dans R.A.I.R.O. Informatique théorique, vol. 19, n^\circ 1, 1985. Zbl0601.68055 MR795769 · Zbl 0601.68055
[19] 19. R. CORI, Partially Abelien Monoids, G.R.E.C.O., 1986.
[20] 20. C. DUBOC, Commutations dans les monoïdes libres : un cadre théorique pour l’étude du parallélisme, L.I.T.P., 1986.
[21] 21. R. DUISBERG, On the Role of Affect in Artificial Intelligence and Music, dans la revue Perspective of new-music, vol. 23, n^\circ 1, 1984.
[22] 22. [Forte 1973] A. FORTE, The Structure of Atonal Music, Yale University, 1973.
[23] 23. [Greussay 1973] P. GREUSSAY, Modèles de description symbolique en analyse musicale, Thèse, Université de Paris-VIII, 1973.
[24] 24. [Greussay 1985] P. GREUSSAY, Exposition ou exploration : graphes beethoveniens, dans Qui, quand, comment ? La recherche musicale, I.R.C.A.M., 1985.
[25] 25. L. HILLER, Phrase Generation in Computer Music Composition, University of New York, 1978.
[26] 26. S. R. HOLTZMAN, Using Generative Grammar for Composition, in Computer music journal, vol. 5, n^\circ 1, 1981.
[27] 27. O. E. LASKE, In Search of a Generative Grammar For Music, in Perspectives of new-music, 1974.
[28] 28. [Lerdahl 1983] F. LERDAHL et R. JACKENDOFF, A Generative Theory of Tonal Music, M.I.T., 1983.
[29] 29. [Lerdahl 1985] F. LERDAHL, Théorie generative de la musique et composition musicale, in Quoi, quand, comment ? La recherche musicale, I.R.C.A.M., 1985.
[30] 30. [Lerdahl 1986] F. LERDAHL et Y. POTARD, La composition assistée par ordinateur, Rapport I.R.C.A.M., 1986.
[31] 31. D. LEWIN, A Label-Free Development for 12-Pitch-Class Systems, in Journal of music theory, vol. 21, n^\circ 1, 1977.
[32] 32. [Lewin 1977] D. LEWIN, Forte’S Interval Vector, My Interval Function, Regener’s Commun-Note Function, in Journal of music theory, vol. 21, n^\circ 2, 1977.
[33] 33. D. LEWIN, On Generalized Intervais and Transpositions, in Journal of music theory, vol. 24, n^\circ 2, 1980.
[34] 34. D. LEWIN, Transformational Techniques in Atonal and Other Music Theories, in Perspectives of new-music, vol. 21, nos 2 et 3, 1983.
[35] 35. C. MALHERBE, G. ASSAYAG et M. CASTELLENGO, Functional Intégration of Complex Instrumental Sounds in Musical Writing, I.C.M.C. 1985.
[36] 36. A. W. MEAD, Pedagogically Speaking: Manifestations of Pitch-Class Order, in On theory only, vol. 8, n^\circ 1, 1984.
[37] 37. R. MORRIS, Combinatorially Without the Aggregate, in Perspectives of new-music, vol. 21, nos 1 et 2, 1983.
[38] 38. [Minsky 1985] M. MINSKY, Musique, sens, pensée, dans Quoi, quand, comment ? La recherche musicale, I.R.C.A.M., 1985.
[39] 39. [Nattiez 1975] J. J. NATTIEZ, Fondements d’une sémiologie de la musique, 10/18, 1975.
[40] 40. [Newcomb 1980] S. R. NEWCOMB, LASSO: an Intelligent Computer Based Tutorial in Sixteenth-Century Counterpoint, in Computer music journal, vol.9, n^\circ 4, 1985.
[41] 41. D. PERRIN, Words Over a Partially Commutative Alphabet, L.I.T.P., 1985. MR815350
[42] 42. J. RAHN, Basic Atonal Theory, Longman, 1980.
[43] 43. [Regener 1974] E. REGENER, On Allen Forte’s Theory of Chords, in Perspectives of new-music, 1974.
[44] 44. [Riotte 1979] A. RIOTTE, Formalisation des structures musicales, Université de Paris-VIII, 1979.
[45] 45. [Roads 1979] C. ROADS, Grammars as Representations for Music, in Computer music journal, vol.3, n^\circ 1, 1979.
[46] 46. N. RUWET, Introduction à la grammaire générative, Plon, 1967.
[47] 47. J. L. SNELL, Musical Grammars and Computer Analysis: A Review, in Perspectives of new-music, vol. 23, n^\circ 2, 1985.
[48] 48. M. STANFIELD, Some Exchange Operations in Twelve-Tone Theory: Part one, in Perspectives of new-music, vol. 23, n^\circ 1, 1981.
[49] 49. D. STARR, Derivation and Polyphony, in Perspectives of new-music, vol. 23, n^\circ 1, 1984.
[50] 50. [Wilcox 1983] H. J. WILCOX, Group Tables and the Generalized Hexachord Theorem, in Perspectives of new-music, vol. 21, nos 1 et 2, 1983.
[51] 51. [Xenakis 1963] I. XENAKIS, Musique formelle, Stock, 1963.
[52] 52. [Xenakis b] I. XENAKIS, pochette du disque : Metastasis, Pithoprakta, Eonta, Le chant du monde, LDX-A-83 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.