zbMATH — the first resource for mathematics

Banach spaces which are M-ideals in their bidual have property (u). (English) Zbl 0659.46014
We show that every Banach space which is an M-ideal in its bidual has the property (u) of Pelczynski. Several consequences are mentioned.
Reviewer: G.Godefroy

46B10 Duality and reflexivity in normed linear and Banach spaces
46B20 Geometry and structure of normed linear spaces
Full Text: DOI Numdam EuDML
[1] E. M. ALFSEN, E. G. EFFROS, Structure in real Banach spaces I, Ann. of Math., 96 (1972), 98-128. · Zbl 0248.46019
[2] E. BEHRENDS, M-structure and the Banach-stone theorem, Lecture Notes in Mathematics 736, Springer-Verlag (1977). · Zbl 0436.46013
[3] E. BEHRENDS, P. HARMAND, Banach spaces which are proper M-ideals, Studia Mathematica, 81 (1985), 159-169. · Zbl 0529.46015
[4] G. A. EDGAR, An ordering of Banach spaces, Pacific J. of Maths, 108, 1 (1983), 83-98. · Zbl 0533.46007
[5] G. GODEFROY, On Riesz subsets of abelian discrete groups, Israel J. of Maths, 61, 3 (1988), 301-331. · Zbl 0661.43003
[6] G. GODEFROY, P. SAAB, Weakly unconditionally convergent series in M-ideals, Math. Scand., to appear. · Zbl 0676.46006
[7] G. GODEFROY, M. TALAGRAND, Nouvelles classes d’espaces de Banach à predual unique, Séminaire d’Ana. Fonct. de l’École Polytechnique, Exposé n° 6 (1980/1981). · Zbl 0475.46013
[8] G. GODEFROY, Existence and uniqueness of isometric preduals : a survey, in Banach space theory, Proceedings of a Research workshop held July 5-25, 1987, Contemporary Mathematics vol. 85 (1989), 131-194. · Zbl 0674.46010
[9] G. GODEFROY, D. LI, Some natural families of M-ideals, to appear. · Zbl 0687.46010
[10] P. HARMAND, A. LIMA, On spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc., 283-1 (1984), 253-264. · Zbl 0545.46009
[11] A. LIMA, M-ideals of compact operators in classical Banach spaces, Math. Scand., 44 (1979), 207-217. · Zbl 0407.46019
[12] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces, Vol. II, Springer-Verlag (1979). · Zbl 0403.46022
[13] F. LUST, Produits tensoriels projectifs d’espaces de Banach faiblement sequentiellement complets, Coll. Math., 36-2 (1976), 255-267. · Zbl 0356.46058
[14] A. PELCZYNSKI, Banach spaces on which every unconditionally convergent operator is weakly compact, Bull. Acad. Pol. Sciences, 10 (1962), 641-648. · Zbl 0107.32504
[15] R. R. SMITH, J. D. WARD, Applications of convexity and M-ideal theory to quotient Banach algebras, Quart. J. of Maths. Oxford, 2-30 (1978), 365-384. · Zbl 0412.46042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.