×

Relaxation of a variational method for impedance computed tomography. (English) Zbl 0659.49009

The problem studied in the paper is the following: find the electrical conductivity of a body by means of voltage and current flux measurements at the boundary. Mathematically, the problem can be studied by means of an elliptic partial differential equation \[ (1)\quad div(\gamma (x)Du)=0\quad in\quad \Omega \subset {\mathbb{R}}^ n\quad (n\geq 2) \] where u is the voltage, \(\gamma\) the unknown conductivity, and \(\gamma\) Du the current flux. The boundary measurements are given by the map \(\Lambda_{\gamma}: H^{1/2}(\partial \Omega)\to H^{-1/2}(\partial \Omega)\) which maps a function \(\phi \in H^{1/2}(\partial \Omega)\) into \(\gamma Du_{\phi}\nu \in H^{-1/2}(\partial \Omega)\), where \(\mu_{\phi}\) is the solution of (1) with \(u=\phi\) on \(\partial \Omega.\)
The problem is then reduced to the minimization for a functional of the form (2) \(\int_{\Omega}g(DU)dx\) \((U=U_ 0\) on \(\partial \Omega)\) where U is a vector-valued function and g is Borel measurable. By using the fact that the relaxed problem associated to (2) is \(\int_{\Omega}Qg(DU)dx\), where Qg denotes the quasiconvex envelope of g, the authors deduce a relaxed formulation for the impedance computed tomography problem, which seems to be more efficient than the original one from the point of view of practical calculations.
Reviewer: G.Buttazzo

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
35J20 Variational methods for second-order elliptic equations
78A55 Technical applications of optics and electromagnetic theory
35R30 Inverse problems for PDEs
Full Text: DOI

References:

[1] Acerbi, Arch. Rat. Mech. Anal. 86 pp 125– (1984)
[2] Variational Convergence for Functions and Operators, Pitman Press, London, 1984.
[3] Ball, Arch. Rat. Mech. Anal. 63 pp 337– (1977)
[4] Ball, J. Funct. Anal. 58 pp 225– (1984)
[5] Barber, J. Phys. E: Sci. Instr. 17 pp 723– (1984)
[6] Butazzo, Nonlinear Anal.: Theory, Methods, and Appl. 9 pp 515– (1985)
[7] Cabib, J. Opt. Theory Appl.
[8] Coen, Geophysics 46 pp 1702– (1981)
[9] Dacorogna, Arch. Rat. Mech. Anal. 77 pp 359– (1981)
[10] Dacorogna, Indiana Univ. Math. J. 31 pp 531– (1982)
[11] Dacorogna, J. Funct. Anal. 46 pp 102– (1982)
[12] Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Lecture Notes in Math. No. 922, Springer-Verlag, New York, 1982.
[13] Dacorogna, J. Math. Pures Appl. 64 pp 403– (1985)
[14] Dines, Geophysics 46 pp 1025– (1981)
[15] and , Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
[16] Evans, Proc. Royal Soc. Edinburgh 106A pp 53– (1987) · Zbl 0628.49011 · doi:10.1017/S0308210500018199
[17] Francfort, J. Stat. Physics 46 pp 161– (1987)
[18] and , Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media, in Proc. Durham Symp. on Non-classical Continuum Mechanics, July, 1986, ed., Cambridge Univ. Press, 1987.
[19] Remarks on the relaxation of integrals of the calculus of variations, in Systems of Nonlinear Partial Differential Equations, ed., D. Reidel, Dordrecht, 1983, pp. 401–408. · doi:10.1007/978-94-009-7189-9_25
[20] Goodman, Comp. Meth. Appl. Mech. Eng. 57 pp 107– (1986)
[21] and , An impedance camera for spatially specific measurements of the thorax, IEEE Trans. Biomed. Eng., BME-25, 1978, pp. 250–254.
[22] Isaacson, IEEE Trans. Medical Imaging MI-5 pp 91– (1986)
[23] and , Electrical Methods in Geophysical Prospecting, Pergamon Press, Oxford, 1966.
[24] Kim, J. Microwave Power 18 pp 245– (1983) · doi:10.1080/16070658.1983.11689329
[25] and , in preparation.
[26] Kohn, RAIRO-MMAN
[27] Kohn, Comm. Pure Appl. Math. 39 pp 113– (1986)
[28] Kohn, Comm. Pure Appl. Math. 37 pp 289– (1984)
[29] and , Identification of an unknown conductivity by means of measurements at the boundary, in Inverse Problems, D. W. McLaughlin, ed., SIAM-AMS Proc. No. 14, 1984, pp. 113–123.
[30] Kohn, Comm. Pure Appl. Math. 38 pp 643– (1985)
[31] A variational method for parameter identification, Ph.D. Thesis, New York University, October, 1986.
[32] Lurie, J. Opt. Th. Appl. 42 pp 283– (1984)
[33] Lurie, Proc. Roy. Soc. Edinburgh 99A pp 71– (1984) · Zbl 0564.73079 · doi:10.1017/S030821050002597X
[34] Lurie, Proc. Roy. Soc. Edinburgh 104A pp 21– (1986) · Zbl 0623.73011 · doi:10.1017/S0308210500019041
[35] Lurie, J. Opt. Theory Appl. 37 pp 499– (1982)
[36] Marino, Ann. Sc. Norm. Sup. Pisa 23 pp 657– (1969)
[37] Modelling the properties of composites by laminates, in Homogenization and Effective Moduli of Materials and Media, et al. eds, Springer-Verlag, New York, 1986, pp. 150–174. · doi:10.1007/978-1-4613-8646-9_7
[38] Morrey, Pacific J. Math. 2 pp 25– (1952) · Zbl 0046.10803 · doi:10.2140/pjm.1952.2.25
[39] Murai, IEEE Trans. Biomed. Eng. BME-32 pp 177– (1985)
[40] H-Convergence, mimeographed notes, Université d’Alger, 1978.
[41] and , Calcul des variations et homogénéisation, in Les Methods de l’Homogénéisation: Theorie et Applications en Physique; proc. of summer school on homogenization, Breau-sans-Nappe, July, 1983; Eyrolles, Paris, 1985, pp. 319–369.
[42] Electrical Impedance Plethysmography, Thomas Springfield, Illinois, 1970.
[43] Parker, Geophysics 42 pp 2143– (1984) · Zbl 0548.34031
[44] Seager, IEE Proc. 132A pp 455– (1985)
[45] Spagnolo, Ann. Sc. Norm. Sup. Pisa 22 pp 577– (1968)
[46] Convergence in energy for elliptic operators, in Numerical Solution of Partial Differential Equations III, ed., Academic Press, New York, 1976.
[47] Sylvester, Comm. Pure Appl. Math. 39 pp 91– (1986)
[48] Sylvester, Annals of Math. 125 pp 153– (1987)
[49] Tarassenko, Electr. Lett. 20 pp 574– (1984)
[50] Problemes de controle des coefficients dans des équations oux derivées partielles, in Control Theory, Numerical Methods, and Computer Systems Modelling, Lecture Notes in Econ. and Math. Syst., No. 107, Springer-Verlag, Berlin, 1975, pp. 420–426. · doi:10.1007/978-3-642-46317-4_30
[51] Estimations fines des coefficients homogénéisés, in Ennio DeGiorgi’s Colloquium, ed., Pitman Press, London, 1985.
[52] Wexler, Appl. Optics 24 pp 3985– (1985)
[53] and , An impedance computed tomography algorithm and system for ground water and hazardous waste imaging, presented to 2nd Annual Canadian/ American Conf. on Hydrogeology, Banff, June, 1985.
[54] Zhikov, Russian Math. Surv. 34 pp 69– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.