×

Gorenstein spaces. (English) Zbl 0659.57011

A (not necessarily commutative) differential graded k-algebra R is Gorenstein if \(Ext_ R(k,R)\) is concentrated in a single degree and has k-dimension one. This definition generalizes the usual definition of a Gorenstein ring. In the context of spaces the DGA’s to which this definition is most often applied are \(C^*(X;k)\), \(C_*(\Omega X;k)\) and \(H^*(X;k)\). In particular, a space X is Gorenstein over k if \(C^*(X;k)\) is. It is shown that Gorenstein spaces are generalizations of Poincaré duality spaces. Indeed, if X has finite category, then it is Gorenstein over \({\mathbb{Z}}/p\) if and only if \(H^*(X;{\mathbb{Z}}/p)\) is finite dimensional and satisfies Poincaré duality. Furthermore, if X is finite, then an equivalent statement is that the Spivak normal fibration associated to X p-localizes to a sphere. This is exactly the p-local version of Spivak’s theorem about Poincaré duality spaces (see M. Spivak [Topology 6, 77-101 (1967; Zbl 0185.509)]). Similarly, a \({\mathbb{Q}}\)-Gorenstein space version is given of the fact that, for an appropriate fibration, the total space satisfies Poincaré duality if and only if the base and fibre do (see D. Gottlieb [Proc. Am. Math. Soc. 76, 148-150 (1979; Zbl 0423.57009)]). The concept of Gorenstein space thus extends many familiar notions about Poincaré duality to a much wider class of spaces. In particular, it is shown that, if \(\pi_*(X)\otimes {\mathbb{Q}}\) is finite dimensional, then X is Gorenstein over \({\mathbb{Q}}\). Hence, rational Postnikov pieces come within the purview of the Gorenstein framework.
Reviewer: J.Oprea

MSC:

57P10 Poincaré duality spaces
55P62 Rational homotopy theory
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
Full Text: DOI

References:

[1] Adams, J. F., On the cobar construction, (Proc. Nat. Acad. Sci., 42 (1956)), 409-412 · Zbl 0071.16404
[2] Avramov, L.; Halperin, S., Through the looking glass: A dictionary between rational homotopy theory and local algebra, (Algebra, Algebraic Topology and Their Interactions. Algebra, Algebraic Topology and Their Interactions, Lecture Notes in Mathematics, Vol. 1183 (1986), Springer-Verlag: Springer-Verlag Berlin), 3-27 · Zbl 0588.13010
[3] Avramov, L.; Foxby, H. B.; Halperin, S., Descent and ascent of local properties along homomorphisms of finite flat dimension, J. Pure Appl. Algebra, 38, 167-185 (1985) · Zbl 0603.13007
[4] Bass, H., On the uniquity of Gorenstein rings, Math. Z., 82, 8-28 (1963) · Zbl 0112.26604
[5] Bieri, R.; Eckmann, B., Groups with homological duality generalizing Poincaré duality, Invent. Math., 20, 103-124 (1973) · Zbl 0274.20066
[6] Eilenberg, S.; Moore, J. C., Homology and fibrations, Comment. Math. Helv., 40, 199-236 (1966) · Zbl 0148.43203
[7] Félix, Y.; Halperin, S., Rational L. S. category and its applications, Trans. Amer. Math. Soc., 273, 1-37 (1982) · Zbl 0508.55004
[8] Félix, Y.; Halperin, S.; Jacobsson, C.; Löfwall, C.; Thomas, J. C., The radical of the homotopy Lie algebra, Amer. J. Math., 109 (1987)
[9] Gorenstein, D., An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc., 72, 414-436 (1952) · Zbl 0046.38503
[10] Gothlieb, D., Poincaré duality and fibrations, (Proc. Amer. Math. Soc., 76 (1979)), 148-150 · Zbl 0423.57009
[11] Halperin, S., Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230, 173-199 (1977) · Zbl 0364.55014
[12] Halperin, S., Lectures on minimal models, Mém. Soc. Math. France (N.S.), No. 9/10 (1983) · Zbl 0536.55003
[13] Halperin, S.; Lemaire, J. M., Suites inertes dans des algèbres de Lie graduées, Math. Scand., 61, 39-67 (1987) · Zbl 0655.55004
[14] S. Halperin and J. M. Lemaire; S. Halperin and J. M. Lemaire · Zbl 0656.55003
[15] Milnor, J.; Moore, J. C., On the structure of Hopf algebras, Ann. of Math., 81, 2, 211-264 (1965) · Zbl 0163.28202
[16] Moore, J. C., Algèbre homologique et homologie des espaces classifiants, (Séminaire Cartan (1959/1960)), exposé 7 · Zbl 0115.17205
[17] Spivak, M., Spaces satisfying Poincaré duality, Topology, 6, 77-102 (1967) · Zbl 0185.50904
[18] Sullivan, D., Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math., 269-331 (1978) · Zbl 0374.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.