zbMATH — the first resource for mathematics

A bifurcation theorem for critical points of variational problems. (English) Zbl 0659.58007
The authors generalize bifurcation theorems for potential operators by admitting a nonlinear dependence on the bifurcation parameter. The main result is the following: Let E be a real Hilbert space (a generalization to some special Banach spaces is possible), let \(F: E\times {\mathbb{R}}\to {\mathbb{R}}\) be \(C^ 2\) and denote \(f(x,\lambda):=D_ xF(x,\lambda),\quad A(\lambda):=D_ xf(0,\lambda).\) Suppose \(f(0,\lambda)\equiv 0\) and let 0 be an eigenvalue of A(0) of a finite multiplicity and an isolated point in the spectrum \(\sigma(A(0))\). Suppose, moreover, that for \(\lambda\neq 0\) small enough all eigenvalues of \(A(\lambda)\) are different from zero and the limits \(r^{\pm}:=\lim_{\lambda \to 0\pm}r(A(\lambda))\) exist, where \(r(A(\lambda)\)) denotes the number of negative eigenvalues of \(A(\lambda)\) converging to zero as \(\lambda\to 0\). Then (0,0) is a bifurcation point of the equation \(f(x,\lambda)=0\). This result is proved by the use of the center manifold theorem and the Conley index.
Reviewer: P.Quittner

58E07 Variational problems in abstract bifurcation theory in infinite-dimensional spaces
35B32 Bifurcations in context of PDEs
Full Text: DOI
[1] Bates, P.W.; Jones, C.K.R.T., The center manifold theorem with applications, (1985), preprint · Zbl 0696.35142
[2] Berger, M.S., Bifurcation theory and the type number of marston Morse, Proc. natn. acad. sci., 69, 1737-1738, (1972) · Zbl 0237.58013
[3] Böhme, R., Die Lösung der verzweigungsgleichung für nichtlineare eigenwertprobleme, Math. Z., 127, 105-126, (1972) · Zbl 0254.47082
[4] Carr, J., Applications of centre manifold theory, (1981), Springer New York · Zbl 0464.58001
[5] Chow, S.-N.; Hale, J.K., Methods in bifurcation theory, Grundl. der athe. wiss., 250, (1983), Springer Berlin
[6] Clark, D.C., Eigenvalue perturbation for odd, gradient operators, Rocky mt. J. math., 5, 317-336, (1975) · Zbl 0312.47053
[7] Conley, C., Isolated invariant sets and the Morse index, Regional conference series in mathematics, 38, (1976), Conference Board of the Mathematics Society
[8] Fadell, E.R.; Rabinowitz, P.M., Bifurcation for odd potential operators and an alternative index, J. funct. analysis, 26, 48-67, (1977) · Zbl 0363.47029
[9] Henry, D., Geometric theory of semilinear parabolic equations, Lecture notes in mathematics, 840, (1982), Springer New York
[10] Kato, T., Perturbation theory for linear operators, Grundl. der mathe. wiss, 132, (1980), Springer Berlin, corrected printing to 2nd edition
[11] Marino, A., La biforcazione nel caso variationale, Conf. sem. mat., (1973), Bari
[12] Marsden, J.E.; Hughes, T.J.R., Mathematical foundations of elasticity, (1983), Prentice Hall Englewood · Zbl 0545.73031
[13] Palmer, K., Qualitative behaviour of a system of ODE near an equilibrium point—a generalization of the hartman – grobman theorem, (1980), preprint
[14] Rabinowitz, P.H., Variational methods for non-linear eigenvalue problems, (1974), C.I.M.E Varenna
[15] Rabinowitz, P.H., A bifurcation theorem for potential operators, J. funct. analysis, 25, 412-424, (1977) · Zbl 0369.47038
[16] Takens, F., Some remarks on the Böhme – berger bifurcation theorem, Math. Z., 129, 359-364, (1972) · Zbl 0237.47032
[17] Vanderbauwhede, A.; von Gils, S.A., Center manifolds and contractions on a scale of Banach spaces, (1985), preprint · Zbl 0621.47050
[18] Kielhöfer, H., A bifurcation theorem for potential operators, (1985), preprint
[19] Abraham, R.; Marsden, J.E.; Ratiu, T., Manifolds, tensor analysis, and applications, (1983), Addison Wesley London · Zbl 0875.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.