## Fuzzy expected value with semiconormed integrals.(Spanish. English summary)Zbl 0659.60005

In this paper we first use the semiconormed fuzzy integrals in order to extend the definition of the fuzzy expected value (F.E.V.) [A. Kandel, On fuzzy statistics, Advances in fuzzy set theory and applications, 181-199 (1979)]. We generalize some of the properties due to Kandel with a criticism about his purpose of constraining the F.E.V. to be linear. Finally, a necessary and sufficient condition is given in order to guarantee some linearity properties for any semiconormed fuzzy integral.

### MSC:

 60A99 Foundations of probability theory

### Keywords:

fuzzy measure; semiconormed fuzzy integrals
Full Text:

### References:

 [1] KANDEL, A. (1979): “On fuzzy statistics{”,Advances in Fuzzy Set Theory and Applications, (Gupta, Ragade y Yager eds.), North-Holland Pub., Amsterdam págs. 321–338.} [2] KANDEL, A. (1980): “Fuzzy dinamical systems and the nature of their solutions{”,Fuzzy Sets Theory and Applications to Policy Analisis and Information Systems (Wang y Chang, eds.), págs. 93–122.} [3] KANDEL, A. (1981): “Fuzzy expectations in energy states in fuzzy media{”,Fuzzy Sets Sys., 6, núm. 2, págs. 145–160.} · Zbl 0468.60099 [4] KLEMENT, E. P., y RALESCU, D. (1983): “Nonlinearity of the fuzzy integrals{”,Fuzzy Sets and Sys., 11, núm. 3, págs. 309–315.} · Zbl 0556.04004 [5] SCHWEIZER, B., y SKLAR, A. (1963): “Associative functions and abstract semigroups{”,Pub. Math. Debrecem, 10, págs. 69–81.} · Zbl 0119.14001 [6] SUAREZ, F. (1983):Familias de integrales difusas y medidas de entropía relacionadas, Tesis Doctoral, Universidad de Oviedo. [7] SUAREZ, F., y BREZMES, T. (1984):Teoremas de convergencia en integrales difusas, actas del XIV Congreso Nacional de Estadística, I.O. e Informática, Granada, 1984, págs. 781–791. [8] SUAREZ, F., y GIL, P.: (1986) ’Two families of fuzzy integrals{”,Fuzzy Sets and Syst., 18, núm. 1, págs. 67–81.} · Zbl 0595.28011 [9] SUGENO, M. (1974):Theory of Fuzzy Integrals and its Applications, Ph. D. Thesis Ins. of Technol., Tokyo. [10] ZADEH, L. H. (1965): “Fuzzy sets{”,Inform. Contr., 8 págs. 338–353.} · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.