zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. (English) Zbl 0659.65132
New methodologies are formulated for following fronts propagating with curvature-dependent speed, which models, among other things, crystal growth and flame propagation. The algoritms are based on an approximation of the Hamilton-Jacobi formulations for such problems. The paper is carefully written with numerical exemplification (including detailed graphics) which shows that the numerical schemes accurately capture the formation of sharp gradients and cusps in the moving fronts.
Reviewer: R.S.Anderssen

65Z05Applications of numerical analysis to physics
65M99Numerical methods for IVP of PDE
35L65Conservation laws
80A25Combustion, interior ballistics
82D25Crystals (statistical mechanics)
Full Text: DOI
[1] Barles, G.: 3rd ed.report no. 464. Report no. 464 (1985)
[2] Brakke, K. A.: The motion of a surface by its mean curvature. (1978) · Zbl 0386.53047
[3] Chorin, A. J.: J. comput. Phys.. 57, 472 (1985)
[4] Chorin, A. J.: J. comput. Phys.. 35, 1 (1980)
[5] Crandall, M. G.; Lions, P. L.: Math. comp.. 43, 1 (1984)
[6] Frankel, M. L.; Sivashinsky, G. I.: Comb. sci. Technol.. 29, 207 (1982)
[7] Gage, M.: Duke math. J.. 50, 1225 (1983)
[8] Gage, M.: Invent. math.. 76, 357 (1984)
[9] Gage, M.; Hamilton, R. S.: J. differential geom.. 23, 69 (1986)
[10] Grayson, M.: J. differential geom.. 26, 285 (1988)
[11] Grayson, M.: A short note on the evolution of a surfaces via mean curvature. (1987) · Zbl 0707.62208
[12] Godunov, S. K.: Mat. sb.. 47, 271 (1959)
[13] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.: J. comput. Phys.. 71, 231 (1987)
[14] Harten, A.; Osher, S.; Engquist, B.; Chakravarthy, S.: Appl. num. Math.. 2, 237 (1986)
[15] Huisken, G.: J. differential geom.. 20, 237 (1984)
[16] Kutnetsov, N. N.: J.j.h.millertopics in numerical analysis III. Topics in numerical analysis III (1977)
[17] Kruz’kov, S. N.: Math. U.S.S.R. Sb.. 10, 217 (1970)
[18] Landau, L.: Acta physiocochim. URSS. 19 (1944)
[19] Langer, J. S.: Rev. mod. Phys.. 52, 1 (1980)
[20] Langer, J. S.; Muller-Krumhaar, H.: Phys. rev. A. 27, 499 (1983)
[21] Lay, P. D.: Comm. pure appl math.. 10, 537 (1957)
[22] Markstein, G. H.: J. aero. Sci.. 18, 199 (1951)
[23] Markstein, G. H.: Non-steady flame propagation. (1964)
[24] Mullins, W. W.; Sekerka, R. F.: J. appl phys.. 34, 2885 (1963)
[25] Nichols, F. A.; Mullins, W. W.: Trans. metall soc. RIME. 223, 1840 (1965)
[26] Noh, W.; Woodward, P.: A.i.van de vooranp.j.zandbergerproceedings, fifth international conference on fluid dynamics. Proceedings, fifth international conference on fluid dynamics (1976)
[27] Osher, S.: SIAM J. Num. anal.. 21, 217 (1984)
[28] Oleinik, O. A.: T. Moscow mat. Obsc.. 5, 433 (1956)
[29] Situ, C.; Osher, S.: J. comput. Phys.. 77, 439 (1988)
[30] Pamplin, B. R.: Crystal growth. (1975)
[31] Sethian, J. A.: CPAM rep. 79. Ph.d. dissertation (June 1982)
[32] Sethian, J. A.: Commun. math. Phys.. 101, 487 (1985)
[33] Sethian, J. A.: P.concusr.finnvariational methods for free surface interfaces. Variational methods for free surface interfaces (1987)
[34] Sethian, J. A.: J. comput. Phys.. 54, 425 (1984)
[35] Sethian, J. A.: B.engquista.majdas.oshercomputational fluid mechanics and reacting gas flows. Computational fluid mechanics and reacting gas flows (1986)
[36] J.A. Sethian and S. Osher, Level Set Algorithms for Hele-Shaw Flow, J. Comput. Phys., in preparation.
[37] Sivashinsky, G. I.: Acta astronaut.. 4, 1177 (1977)
[38] Turnbull, D.: F.seitzd.turnbull3rd ed.solid state physics I. Solid state physics I 3 (1956)
[39] Zabusky, N. J.; Overman, E. A.: J. comput. Phys.. 52, 351 (1984)
[40] Zeldovich, Y. B.: Comb. flame. 40, 225 (1981)