Osher, Stanley; Sethian, James A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. (English) Zbl 0659.65132 J. Comput. Phys. 79, No. 1, 12-49 (1988). New methodologies are formulated for following fronts propagating with curvature-dependent speed, which models, among other things, crystal growth and flame propagation. The algoritms are based on an approximation of the Hamilton-Jacobi formulations for such problems. The paper is carefully written with numerical exemplification (including detailed graphics) which shows that the numerical schemes accurately capture the formation of sharp gradients and cusps in the moving fronts. Reviewer: R.S.Anderssen Cited in 34 ReviewsCited in 2142 Documents MSC: 65Z05 Applications to the sciences 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 35L65 Hyperbolic conservation laws 80A25 Combustion 82D25 Statistical mechanics of crystals Keywords:hyperbolic conservation laws; numerical example; following fronts propagating; curvature-dependent speed; crystal growth; flame propagation; Hamilton-Jacobi formulations; moving fronts PDF BibTeX XML Cite \textit{S. Osher} and \textit{J. A. Sethian}, J. Comput. Phys. 79, No. 1, 12--49 (1988; Zbl 0659.65132) Full Text: DOI References: [1] Barles, G., (Report No. 464 (1985), Institut National de Recherche en Informatique et en Automatique (INRIA): Institut National de Recherche en Informatique et en Automatique (INRIA) Sophia Antipolis, France), (unpublished) [2] Brakke, K. A., The Motion of a Surface by Its Mean Curvature (1978), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0386.53047 [3] Chorin, A. J., J. Comput. Phys., 57, 472 (1985) [4] Chorin, A. J., J. Comput. Phys., 35, 1 (1980) [5] Crandall, M. G.; Lions, P. L., Math. Comp., 43, 1 (1984) [6] Frankel, M. L.; Sivashinsky, G. I., Comb. Sci. Technol., 29, 207 (1982) [7] Gage, M., Duke Math. J., 50, 1225 (1983) [8] Gage, M., Invent. Math., 76, 357 (1984) [9] Gage, M.; Hamilton, R. S., J. Differential Geom., 23, 69 (1986) [10] Grayson, M., J. Differential Geom., 26, 285 (1988) [11] Grayson, M., A Short Note on the Evolution of a Surfaces via Mean Curvature (1987), Stanford University Mathematics Dept, preprint [12] Godunov, S. K., Mat. Sb., 47, 271 (1959) [13] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., J. Comput. Phys., 71, 231 (1987) [14] Harten, A.; Osher, S.; Engquist, B.; Chakravarthy, S., Appl. Num. Math., 2, 237 (1986) [15] Huisken, G., J. Differential Geom., 20, 237 (1984) [16] Kutnetsov, N. N., (Miller, J. J.H., Topics in Numerical Analysis III (1977), Academic Press: Academic Press New York) [17] Kruz’kov, S. N., Math. U.S.S.R. Sb., 10, 217 (1970) [18] Landau, L., Acta Physiocochim. URSS, 19 (1944) [19] Langer, J. S., Rev. Mod. Phys., 52, 1 (1980) [20] Langer, J. S.; Muller-Krumhaar, H., Phys. Rev. A, 27, 499 (1983) [21] Lay, P. D., Comm. Pure Appl Math., 10, 537 (1957) [22] Markstein, G. H., J. Aero. Sci., 18, 199 (1951) [23] Markstein, G. H., Non-Steady Flame Propagation (1964), Pergammon: Pergammon MacMillan C., New York · Zbl 0077.19201 [24] Mullins, W. W.; Sekerka, R. F., J. Appl Phys., 34, 2885 (1963) [25] Nichols, F. A.; Mullins, W. W., Trans. Metall Soc. RIME, 223, 1840 (1965) [26] Noh, W.; Woodward, P., (van de Vooran, A. I.; Zandberger, P. J., Proceedings, Fifth International Conference on Fluid Dynamics (1976), Springer-Verlag: Springer-Verlag New York/Berlin) [27] Osher, S., SIAM J. Num. Anal., 21, 217 (1984) [28] Oleinik, O. A., T. Moscow Mat. Obsc., 5, 433 (1956) [29] Situ, C.; Osher, S., J. Comput. Phys., 77, 439 (1988) [30] Pamplin, B. R., Crystal Growth (1975), Pergammon: Pergammon New York [31] Sethian, J. A., (CPAM Rep. 79. CPAM Rep. 79, Ph.D. dissertation (June 1982), University of California: University of California Berkeley, California) [32] Sethian, J. A., Commun. Math. Phys., 101, 487 (1985) [33] Sethian, J. A., (Concus, P.; Finn, R., Variational Methods for Free Surface Interfaces (1987), Springer-Vertag: Springer-Vertag New York) [34] Sethian, J. A., J. Comput. Phys., 54, 425 (1984) [35] Sethian, J. A., (Engquist, B.; Majda, A.; Osher, S., Computational Fluid Mechanics and Reacting Gas Flows (1986), Institute for Mathematics and Its Applicationsm Univ. of Minnesota) [37] Sivashinsky, G. I., Acta Astronaut., 4, 1177 (1977) [38] Turnbull, D., (Seitz, F.; Turnbull, D., Solid State Physics I, 3 (1956), Academic Press: Academic Press New York) [39] Zabusky, N. J.; Overman, E. A., J. Comput. Phys., 52, 351 (1984) [40] Zeldovich, Y. B., Comb. Flame, 40, 225 (1981) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.