×

Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. (English) Zbl 0659.65132

New methodologies are formulated for following fronts propagating with curvature-dependent speed, which models, among other things, crystal growth and flame propagation. The algoritms are based on an approximation of the Hamilton-Jacobi formulations for such problems. The paper is carefully written with numerical exemplification (including detailed graphics) which shows that the numerical schemes accurately capture the formation of sharp gradients and cusps in the moving fronts.
Reviewer: R.S.Anderssen

MSC:

65Z05 Applications to the sciences
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35L65 Hyperbolic conservation laws
80A25 Combustion
82D25 Statistical mechanics of crystals
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Barles, G., (), (unpublished)
[2] Brakke, K.A., The motion of a surface by its Mean curvature, (1978), Princeton Univ. Press Princeton, NJ · Zbl 0386.53047
[3] Chorin, A.J., J. comput. phys., 57, 472, (1985)
[4] Chorin, A.J., J. comput. phys., 35, 1, (1980)
[5] Crandall, M.G.; Lions, P.L., Math. comp., 43, 1, (1984)
[6] Frankel, M.L.; Sivashinsky, G.I., Comb. sci. technol., 29, 207, (1982)
[7] Gage, M., Duke math. J., 50, 1225, (1983)
[8] Gage, M., Invent. math., 76, 357, (1984)
[9] Gage, M.; Hamilton, R.S., J. differential geom., 23, 69, (1986)
[10] Grayson, M., J. differential geom., 26, 285, (1988)
[11] Grayson, M., A short note on the evolution of a surfaces via Mean curvature, (1987), Stanford University Mathematics Dept, preprint
[12] Godunov, S.K., Mat. sb., 47, 271, (1959)
[13] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., J. comput. phys., 71, 231, (1987)
[14] Harten, A.; Osher, S.; Engquist, B.; Chakravarthy, S., Appl. num. math., 2, 237, (1986)
[15] Huisken, G., J. differential geom., 20, 237, (1984)
[16] Kutnetsov, N.N., ()
[17] Kruz’kov, S.N., Math. U.S.S.R. sb., 10, 217, (1970)
[18] Landau, L., Acta physiocochim. URSS, 19, (1944)
[19] Langer, J.S., Rev. mod. phys., 52, 1, (1980)
[20] Langer, J.S.; Muller-Krumhaar, H., Phys. rev. A, 27, 499, (1983)
[21] Lay, P.D., Comm. pure appl math., 10, 537, (1957)
[22] Markstein, G.H., J. aero. sci., 18, 199, (1951)
[23] Markstein, G.H., Non-steady flame propagation, (1964), Pergammon MacMillan C., New York · Zbl 0077.19201
[24] Mullins, W.W.; Sekerka, R.F., J. appl phys., 34, 2885, (1963)
[25] Nichols, F.A.; Mullins, W.W., Trans. metall soc. RIME, 223, 1840, (1965)
[26] Noh, W.; Woodward, P., ()
[27] Osher, S., SIAM J. num. anal., 21, 217, (1984)
[28] Oleinik, O.A., T. Moscow mat. obsc., 5, 433, (1956)
[29] Situ, C.; Osher, S., J. comput. phys., 77, 439, (1988)
[30] Pamplin, B.R., Crystal growth, (1975), Pergammon New York
[31] Sethian, J.A., ()
[32] Sethian, J.A., Commun. math. phys., 101, 487, (1985)
[33] Sethian, J.A., ()
[34] Sethian, J.A., J. comput. phys., 54, 425, (1984)
[35] Sethian, J.A., ()
[36] {\scJ.A. Sethian and S. Osher}, Level Set Algorithms for Hele-Shaw Flow, J. Comput. Phys., in preparation.
[37] Sivashinsky, G.I., Acta astronaut., 4, 1177, (1977)
[38] Turnbull, D., ()
[39] Zabusky, N.J.; Overman, E.A., J. comput. phys., 52, 351, (1984)
[40] Zeldovich, Y.B., Comb. flame, 40, 225, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.