×

Catégories et langages de dot-depth un. (Categories and dot-depth one languages). (French) Zbl 0659.68094

A categorical (simpler than the original one) proof is given for a theorem of R. Knast [ibid. 17, 321-330 (1984; Zbl 0522.68063)].
Reviewer: Gh.Păun

MSC:

68Q45 Formal languages and automata
18B20 Categories of machines, automata

Citations:

Zbl 0522.68063
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] 1. J. A. BRZOZOWSKI et I. SIMON, Characterization of Locally Testable Events, Discrete Math., vol. 4, 1973, p. 243-271. Zbl0255.94032 MR319404 · Zbl 0255.94032
[2] 2. S. EILENBERG, Automata, Languages and Machines, vol. B., Academic Press, New York, 1976. MR530383
[3] 3. R. KNAST, A semigroup Characterization of Dot-depth one Languages, RAIRO Informatique Théorique, vol. 17, 1984, p. 321-330. Zbl0522.68063 MR743892 · Zbl 0522.68063
[4] 4. J. E. PIN, H. STRAUBING et D. THÉRIEN, Locally Trivial Categories and Unambiguous Concentration, accepté pour publication dans J. P. Ap. A., 1986. Zbl0645.20046 · Zbl 0645.20046
[5] 5. H. STRAUBING et D. THÉRIEN, Partially Ordered Finite Monoids and a Theorem of I. Simon, Technical Report SOCS-85-10, Mégill University, 1985, soumis pour publication. Zbl0658.20035 · Zbl 0658.20035
[6] 6. D. THÉRIEN et M. SZNAJDER-GLODOWSKI, Finite Categories and Regular Languages, Technical Report SOCS-85-24, Megill University, 1985. · Zbl 0761.68065
[7] 7. D. THÉRIEN et A. WEISS, Graph Congruences and Wreath Products, J. P. Ap. Alg., vol. 36, 1985, p. 205-215. Zbl0559.20042 MR787173 · Zbl 0559.20042
[8] 8. B. TILSON, Categories as Algebras, an Essential Ingredient in the Theory of Monoids, accepté pour publication dans J. P. Ap. A., 1986. Zbl0627.20031 MR915990 · Zbl 0627.20031
[9] 9. A. WEISS et D. THÉRIEN, Varieties of Finite Categories, accepté pour publication dans RAIRO Informatique Théorique, 1986. Zbl0608.18002 MR894719 · Zbl 0608.18002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.