×

zbMATH — the first resource for mathematics

Regularity properties of deformations with finite energy. (English) Zbl 0659.73038
(Author’s summary.) The purpose of this paper is to point out some regularity properties of a class of functions which play an important role in nonlinear elasticity.
Reviewer: J.Dunwoody

MSC:
74B20 Nonlinear elasticity
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. M. Ball [1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337–403, 1978. · Zbl 0368.73040
[2] J. M. Ball [2] Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Royal Soc. Edinburgh 88 A, 315–328. · Zbl 0478.46032
[3] J. M. Ball [3] Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. Roy. Soc. Lond. A 306, 557–612, 1982.
[4] J. Dieudonné [1] ”Treatise on Analysis”, Academic Press, 1972. · Zbl 0268.58001
[5] H. Federer [1] ”Geometric Measure Theory”, Springer, Berlin, 1969. · Zbl 0176.00801
[6] S. Fučik & J. Nečas & J. Souček & V. Souček [1] ”Spectral Analysis of Nonlinear Operators”, Society of Czechoslovak Mathematicians and Physicists, Praha 1973.
[7] W. K. Hayman & P. B. Kennedy [1] ”Subharmonic Functions”, Academic Press, 1976. · Zbl 0419.31001
[8] J. Malý [1] Positive quasi-minima, Comm. Math. Univ. Carolinae, 24, 4 (1983).
[9] M. Marcus & V. J. Mizel [1] Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems, Bull. Amer. Math. Soc. 79 (1973) 750–793. · Zbl 0275.49041
[10] Ch. B. Morrey [1] ”Multiple Integrals in the Calculus of Variations”, Springer, Berlin Heidelberg New York, 1966. · Zbl 0142.38701
[11] J. Nečas [1] ”Les méthodes directes en théorie des équations elliptiques”, Academia, Praha 1967.
[12] J. Sivaloganathan [1] Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rational Mech. Anal. 96 (1986) 97–136. · Zbl 0628.73018
[13] C. A. Stuart [1] Radially symmetric cavitation for hyperelastic materials, Ann. Inst. Henri Poincaré 2, n1, 1985, 33–66.
[14] S. K. Vodopyanov & V. M. Goldstein [1] Quasiconformal mappings and spaces of functions with generalized first derivatives, Siberian Math. J. 17 (No. 3) 1977, 515–531.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.