×

On the Calabi-Markus phenomenon and a rigidity theorem for Euclidean motion groups. (English) Zbl 1404.22019

Summary: In this article, we study the rigidity properties of deformation parameters of the natural action of a discontinuous subgroup \(\Gamma \subset G\), on a homogeneous space \(G/H\), where \(H\) stands for a closed subgroup of a Euclidean motion group \(G:=\mathrm{O}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}\). That is, we prove the following local (and global) rigidity theorem: the parameter space admits a rigid (equivalently a locally rigid) point if and only if \(\Gamma\) is finite. Remarkably, it turns out that \(H\) is compact whenever \(\Gamma \) is infinite, which makes accessible the study of the corresponding parameter and deformation spaces and their topological and local geometrical features. This shows that the Calabi-Markus phenomenon occurs in this setting. That is, if \(H\) is a closed noncompact subgroup of \(G\), then \(G/H\) does not admit a compact Clifford-Klein form, unless \(G/H\) itself is compact. We also answer a question posed by T. Kobayashi. That is, no homogeneous space \(G/H\) admits a noncommutative free group as a discontinuous group.

MSC:

22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
22E40 Discrete subgroups of Lie groups
57S30 Discontinuous groups of transformations

References:

[1] A. Baklouti, N. ElAloui, and I. Kédim, A rigidity theorem and a stability theorem for two-step nilpotent Lie groups , J. Math. Sci. Univ. Tokyo 19 (2012), 281-307. · Zbl 1258.22003
[2] A. Baklouti and I. Kédim, On non-abelian discontinuous subgroups acting on exponential solvable homogeneous spaces , Int. Math. Res. Not. IMRN 2010 , no. 7, 1315-1345. · Zbl 1197.22003 · doi:10.1093/imrn/rnp193
[3] A. Baklouti, I. Kédim, and T. Yoshino, On the deformation space of Clifford-Klein forms of Heisenberg groups , Int. Math. Res. Not. IMRN 2008 , no. 16, art. ID rnn066. · Zbl 1154.22011 · doi:10.1093/imrn/rnn066
[4] L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume , Math. Ann. 70 (1911), 297-336. · JFM 42.0144.02 · doi:10.1007/BF01564500
[5] L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich , Math. Ann. 72 (1912), 400-412. · JFM 43.0186.01 · doi:10.1007/BF01456724
[6] E. Calabi and L. Markus, Relativistic space forms , Ann. of Math. (2) 75 (1962), 63-76. · Zbl 0101.21804 · doi:10.2307/1970419
[7] W. M. Goldman and J. J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space , Invent. Math. 88 (1987), 495-520. · Zbl 0627.22012 · doi:10.1007/BF01391829
[8] J. Hilgert and K.-H. Neeb, Structure and Geometry of Lie Groups , Springer Monogr. Math., Springer, New York, 2012. · Zbl 1229.22008 · doi:10.1007/978-0-387-84794-8
[9] K. H. Hofmann and K.-H. Neeb, The compact generation of closed subgroups of locally compact groups , J. Group Theory 12 (2009), 555-559. · Zbl 1179.22003 · doi:10.1515/JGT.2008.096
[10] T. Kobayashi, Proper action on a homogeneous space of reductive type , Math. Ann. 285 (1989), 249-263. · Zbl 0662.22008 · doi:10.1007/BF01443517
[11] T. Kobayashi, “Discontinuous groups acting on homogeneous spaces of reductive type” in Representation Theory of Lie Groups and Lie Algebras (Fuji-Kawaguchiko, 1990) , World Sci., River Edge, N. J., 1992, 59-75.
[12] T. Kobayashi, On discontinuous groups on homogeneous spaces with noncompact isotropy subgroups , J. Geom. Phys. 12 (1993), 133-144. · Zbl 0815.57029 · doi:10.1016/0393-0440(93)90011-3
[13] T. Kobayashi, Criterion for proper action on homogeneous spaces of reductive groups , J. Lie Theory 6 (1996), 147-163. · Zbl 0863.22010
[14] T. Kobayashi, “Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds” in Algebraic and Analytic Methods in Representation Theory (Sonderborg, 1994) , Perspect. Math. 17 , Academic Press, San Diego, Calif., 1996, 99-165. · doi:10.1016/B978-012625440-2/50004-5
[15] T. Kobayashi, Deformation of compact Clifford-Klein forms of indefinite Riemannian homogeneous manifolds , Math. Ann. 310 (1998), 394-409. · Zbl 0891.22014 · doi:10.1007/s002080050153
[16] T. Kobayashi, “Discontinuous groups for non-Riemannian homogeneous spaces” in Mathematics Unlimited-2001 and Beyond , Springer, Berlin, 2001, 723-747. · Zbl 1023.53031 · doi:10.1007/978-3-642-56478-9_8
[17] T. Kobayashi and S. Nasrin, Deformation of properly discontinuous actions of \({\mathbb{Z}}^{k}\) on \({\mathbb{R}}^{k+1}\) , Internat. J. Math. 17 (2006), 1175-1193. · Zbl 1124.57015 · doi:10.1142/S0129167X06003862
[18] T. S. Motzkin and O. Taussky, Pairs of matrices with property L , Trans. Amer. Math. Soc. 73 , no. 1 (1952), 108-114. · Zbl 0048.00905 · doi:10.2307/1990825
[19] R. K. Oliver, On Bieberbach’s analysis of discrete Euclidean groups , Proc. Amer. Math. Soc. 80 (1980), 15-21. · Zbl 0434.20029 · doi:10.2307/2042138
[20] D. J. S. Robinson, A Course in the Theory of Groups , 2nd ed., Grad. Texts in Math. 80 , Springer, New York, 1996. · JFM 44.0424.03
[21] A. Selberg, “On discontinuous groups in higher-dimension symmetric spaces” in Contributions to Functional Theory (Internat. Colloq. Function Theory, Bombay, 1960) , Tata Institute, Bombay, 1960, 147-164.
[22] J.-P. Serre, Représentations linéaires des groupes finis , Paris, Hermann, 1998.
[23] A. Weil, On discrete subgroups of Lie groups, II , Ann. of Math. (2) 75 (1962), 578-602. · doi:10.2307/1970212
[24] A. Weil, Remarks on the cohomology of groups , Ann. of Math. (2) 80 (1964), 149-157. · Zbl 0192.12802 · doi:10.2307/1970495
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.