×

Quantum geometric Langlands correspondence in positive characteristic: the \(\mathrm{GL}_N\) case. (English) Zbl 1430.14029

Summary: We prove a version of the quantum geometric Langlands conjecture in characteristic \(p\). Namely, we construct an equivalence of certain localizations of derived categories of twisted crystalline \(\mathcal{D}\)-modules on the stack of rank \(N\) vector bundles on an algebraic curve \(C\) in characteristic \(p\). The twisting parameters are related in the way predicted by the conjecture and are assumed to be irrational (i.e., not in \(\mathbb{F}_{p}\)). We thus extend some previous results Braverman and Bezrukavnikov concerning a similar problem for the usual (nonquantum) geometric Langlands. In the course of the proof, we introduce a generalization of \(p\)-curvature for line bundles with nonflat connections, define quantum analogues of Hecke functors in characteristic \(p\), and construct a Liouville vector field on the space of de Rham local systems on \(C\).

MSC:

14D24 Geometric Langlands program (algebro-geometric aspects)
14G17 Positive characteristic ground fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] D. Arinkin, Duality for representations of \(1\)-motives , appendix to Torus fibrations, gerbes, and duality by R. Donagi and T. Pantev, Mem. Amer. Math. Soc. 193 (2008), no. 901.
[2] D. Arinkin, Autoduality of compactified Jacobians for curves with plane singularities , J. Algebraic Geom. 22 (2013), 363-388. · Zbl 1376.14029
[3] A. Beilinson and V. Drinfeld, Quantization of Hitchin integrable system and Hecke eigensheaves , preprint, (accessed 14 January 2016).
[4] R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic , with an appendix by Bezrukavnikov and Simon Riche, Ann. of Math. (2) 167 (2008), 945-991. · Zbl 1220.17009
[5] A. Braverman and R. Bezrukavnikov, Geometric Langlands correspondence for \(\mathcal{D}\)-modules in prime characteristic: The \(\mathrm{GL}(n)\) case , Pure. Appl. Math. Q. 3 (2007), 153-179. · Zbl 1206.14030
[6] L. Breen, Un théorème d’annulation pour certains \(E\mathrm{xt}^{i}\) de faisceaux abéliens , Ann. Sci. Éc. Norm. Supér. (4) 8 (1975), 339-352. · Zbl 0313.14001
[7] T.-H. Chen and X. Zhu, Non-abelian Hodge theory for algebraic curves in characteristic \(p\) , Geom. Funct. Anal. 25 (2015), 1706-1733. · Zbl 1330.14015
[8] T.-H. Chen and X. Zhu, Geometric Langlands in prime characteristic , preprint, [math.AG]. arXiv:1403.3981v1
[9] R. Donagi and T. Pantev, Torus fibrations, gerbes, and duality , Mem. Amer. Math. Soc. 193 (2008), no. 901. · Zbl 1140.14001
[10] G. Faltings, Stable \(G\)-bundles and projective connections , J. Algebraic Geom. 2 (1993), 507-568.
[11] M. Finkelberg and S. Lysenko, Twisted geometric Satake equivalence , J. Inst. Math. Jussieu 9 (2010), 719-739. · Zbl 1316.22019
[12] E. Frenkel, “Lectures on the Langlands program and conformal field theory” in Frontiers in Number Theory, Physics, and Geometry, II , Springer, Berlin, 2007, 387-533. · Zbl 1196.11091
[13] D. Gaitsgory, Twisted Whittaker model and factorizable sheaves , Selecta Math. (N.S.) 13 (2008), 617-659. · Zbl 1160.17009
[14] D. Gaitsgory, unpublished notes. · Zbl 1292.00026
[15] M. Groechenig, Moduli of flat connections in positive characteristic , preprint, [math.AG]. arXiv:1201.0741v2 · Zbl 1368.14021
[16] A. Kapustin, A note on quantum geometric Langlands duality, gauge theory, and quantization of the moduli space of flat connections , preprint, [hep-th]. arXiv:0811.3264v1 · Zbl 1156.14319
[17] A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program , Commun. Number Theory Phys. 1 (2007), 1-236. · Zbl 1128.22013
[18] T. Nevins, Mirabolic Langlands duality and the quantum Calogero-Moser system , Transform. Groups 14 (2009), 931-983. · Zbl 1200.37068
[19] A. Polishchuk and M. Rothstein, Fourier transform for \(D\)-algebras, I , Duke Math. J. 109 (2001), 123-146. · Zbl 1069.14003
[20] A. Stoyanovsky, On quantization of the geometric Langlands correspondence, I (withdrawn), preprint, [math.AG]. · Zbl 1312.14005
[21] A. Stoyanovsky, Quantum Langlands duality and conformal field theory , preprint, [math.AG]. · Zbl 1174.81005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.